Research Papers

Computational Analysis of Non-Spherical Particle Transport and Deposition in Shear Flow With Application to Lung Aerosol Dynamics—A Review

[+] Author and Article Information
Clement Kleinstreuer

Department of Mechanical and Aerospace Engineering,
North Carolina State University,
Raleigh, NC 27695-7910;
Joint Department of Biomedical Engineering, University of North Carolina at Chapel Hill and NC State University,
Raleigh, NC 27695-7910
e-mail: ck@ncsu.edu

Yu Feng

Department of Mechanical and Aerospace Engineering,
North Carolina State University,
Raleigh, NC 27695-7910

1Corresponding author.

Contributed by the Bioengineering Division of ASME for publication in the Journal of Biomechanical Engineering. Manuscript received November 9, 2012; final manuscript received December 3, 2012; accepted manuscript posted December 22, 2012; published online February 7, 2013. Editor: Victor H. Barocas.

J Biomech Eng 135(2), 021008 (Feb 07, 2013) (19 pages) Paper No: BIO-12-1547; doi: 10.1115/1.4023236 History: Received November 09, 2012; Revised December 03, 2012

All naturally occurring and most man-made solid particles are nonspherical. Examples include air-pollutants in the nano- to micro-meter range as well as blood constituents, drug particles, and industrial fluid-particle streams. Focusing on the modeling and simulation of inhaled aerosols, theories for both spherical and nonspherical particles are reviewed to analyze the contrasting transport and deposition phenomena of spheres and equivalent spheres versus ellipsoids and fibers.

Copyright © 2013 by ASME
Your Session has timed out. Please sign back in to continue.


American Cancer Society, 2012, Cancer Facts & Figures 2012, American Cancer Society Inc., Atlanta, GA.
Murphy, S. L., Xu, J., and Kochanek, K. D., 2012, “Deaths: Preliminary Data for 2010,” Natl. Vital Stat. Rep., 60(4), pp. 1–69. Available at http://www.cdc.gov/nchs/data/nvsr/nvsr60/nvsr60_04.pdf
Bakand, S., Hayes, A., and Dechsakulthorn, F., 2012, “Nanoparticles: A Review of Particle Toxicology Following Inhalation Exposure,” Inhalation Toxicol., 24(2), pp. 125–135. [CrossRef]
Shi, H., Kleinstreuer, C., Zhang, Z., and Kim, C. S., 2004, “Nanoparticle Transport and Deposition in Bifurcating Tubes With Different Inlet Conditions,” Phys. Fluids, 16(7), pp. 2199–2213. [CrossRef]
Zhang, Z., Kleinstreuer, C., Donohue, J. F., and Kim, C. S., 2005, “Comparison of Micro- and Nano-Size Particle Depositions in a Human Upper Airway Model,” J. Aerosol Sci., 36, pp. 211–233. [CrossRef]
Som, C., Wick, P., Krug, H., Nowack, B., 2011, “Environmental and Health Effects of Nanomaterials in Nanotextiles and Façade Coatings,” Environ. Int., 37, pp. 1131–1142. [CrossRef] [PubMed]
Su, W. C., and Cheng, Y. S., 2006, “Deposition of Fiber in a Human Airway Replica,” Aerosol Sci., 37, pp. 1429–1441. [CrossRef]
Zhou, Y., Su, W. C., and Cheng, Y. S., 2008, “Fiber Deposition in the Tracheobronchial Region: Deposition Equations,” Inhalation Toxicol., 20(13), pp. 1191–1198. [CrossRef]
Fenoglio, I., Aldieri, E., Gazzano, E., Cesano, F., Colonna, M., Scarano, D., Mazzucco, G., Attanasio, A., Yakoub, Y., Lison, D., and Fubini, B., 2011, “Thickness of Multiwalled Carbon Nanotubes Affects Their Lung Toxicity,” Chem. Res. Toxicol., 25, pp. 74–82. [CrossRef] [PubMed]
Kamp, D. W., 2009, “Asbestos-Induced Lung Diseases: An Update,” Transl.Res., 153(4), pp. 143–152. [CrossRef] [PubMed]
Gwinn, M. R., Devoney, D., Jarabek, A. M., Sonawane, B., Wheller, J., Weissman, D. N., Masten, S., and Thompson, C., 2011, “Meeting Report: Mode(s) of Action of Asbestos and Related Mineral Fibers,” Environ. Health Perspect., 119(12), pp. 1806–1810. [CrossRef] [PubMed]
Pacurari, M., Qian, Y., Porter, D. W., Wolfarth, M., Wan, Y., Luo, D., and Guo, N. L., 2011, “Multi-Walled Carbon Nanotube-Induced Gene Expression in the Mouse Lung: Association With Lung Pathology,” Toxicol. Appl. Pharmacol.255(1), pp. 18–31. [CrossRef] [PubMed]
Levy, B. S., Wagner, G. R., and Rest, K. M., eds, 2005, Preventing Occupational Disease and Injury, APHA, Washington, DC.
Wang, Z., Hopke, P. K., Baron, P. A., Ahmadi, G., Cheng, Y. S., Deye, G., and Su, W. C., 2005, “Fiber Classification of the Influence of Average Air Humidity,” Aerosol Sci. Technol., 39, pp. 1056–1063. [CrossRef]
Su, W. C., and Cheng, Y. S., 2009, “Deposition of Man-Made Fibers in Human Respiratory Airway Casts,” Aerosol Sci., 40, pp. 270–284. [CrossRef]
Inthavong, K., Wen, J., Tian, Z., and Tu, J., 2008, “Numerical Study of Fibre Deposition in a Human Nasal Cavity,” Aerosl Sci., 39, pp. 253–265. [CrossRef]
Baan, R. A., and Grosse, Y., 2004, “Man-Made Mineral (Vitreous) Fibres: Evaluations of Cancer Hazards by the IARC Monographs Programme,” Mutat. Res., 553, pp. 43–58. [CrossRef] [PubMed]
Lippman, M., 1990, “Effects of Fiber Characteristics on Lung Deposition, Retention, and Disease,” Environ. Health Perspect., 88, pp. 311–317. [CrossRef] [PubMed]
Tian, L., Ahmadi, G., Wang, Z., and Hopke, P. K., 2012, “Transport and Deposition of Ellisoidal Fibers in Low Reynolds Number Flows,” J. Aerosol Sci., 45, pp. 1–18. [CrossRef]
Iijima, S., 1991, “Helical Microtubules of Graphitic Carbon,” Nature, 354(6348), pp. 56–58. [CrossRef]
Poland, C. A., Duffin, R., Kinloch, I., Maynard, A., Wallace, W. A., Seaton, A., and Donaldson, K., 2008, “Carbon Nanotubes Introduced into the Abdominal Cavity of Mice Show Asbestos-Like Pathogenicity in a Pilot Study,” Nature Nanotechnol., 3(7), pp. 423–428. [CrossRef]
Lam, C. W., James, J. T., Mccluskey, R., Arepalli, S., and Hunter, R. L., 2006, “A Review of Carbon Nanotube Toxicity and Assessment of Potential Occupational and Environmental Health Risks,” Crit. Rev. Toxicol., 36, pp. 189–217. [CrossRef] [PubMed]
Mitragotri, S., 2009, Editorial: In drug Delivery, Shape Does Matter,” Pharm. Res., 26(1), pp. 232–234. [CrossRef] [PubMed]
Sturm, R., and Hofmann, W., 2009, “A Theoretical Approach to the Deposition and Clearance of Fibers With Variable Size in the Human Respiratory Tract,” J. Hazard. Mater., 170, pp. 210–218. [CrossRef] [PubMed]
Gratton, S. E., Ropp, P. A., Pohlhaus, P. D., Luft, J. S., Madden, V. J., Napier, M. E., and Desimone, J. M., 2008, “The Effect of Particle Design on Cellular Internalization Pathways,” Proc., Natl. Acad. Sci. USA., 105, pp. 11613–11618. [CrossRef]
Kleinstreuer, C., 2013, Microfluidics and Nanofluidics: Theory and Selected Applications, John Wiley & Sons, Hoboken, NJ.
Kleinstreuer, C., Zhang, Z., and Donohue, J. F., 2008, “Targeted Drug-Aerosol Delivery in the Human Respiratory System,” Ann. Rev. Biomed. Eng., 10, pp. 195–220. [CrossRef]
Kleinstreuer, C., and Zhang, Z., 2010, “Airflow and Particle Transport in the Human Respiratory System,” Ann. Rev. Fluid Mech., 42, pp. 301–334. [CrossRef]
Singh, A., Rishabha, M., and Pramod, K. S., 2011, “Pulmonary Drug Delivery System: A Novel Approach for Drug Delivery,” Current Drug Ther., 6(2), pp. 137–151. [CrossRef]
Forbes, B., Asgharian, B., Dailey, L. A., Ferguson, D., Gerde, P., Gumbleton, M., Gustavsson, L., Hardy, C., Hassall, D., Jones, R., Lock, R., Maas, J., Mcgovern, T., Pitcaim, G. R., Somers, G., and Wolff, R. J., 2011, “Challenges in Inhaled Product Development and Opportunities for Open Innovation,” Adv. Drug Delivery Rev., 63, pp. 69–87. [CrossRef]
Pollard, A., Uddin, M., Shinneeb, A. M., and Ball, C. G., 2012, “Recent Advanced and Key Challenges in Investigations of the Flow Inside Human Oro-Pharyngeal-Laryngeal Airway,” Int. J. Comput. Fluid Dyn., 12, pp. 1–19. [CrossRef]
Shi, H. W., 2006, “Numerical Simulation of Airflow, Particle Deposition and Drug Delivery in a Representative Human Nasal Airway Model,” Ph.D. thesis, North Carolina State University, Raleigh, NC.
Harris, R. L., and Fraser, D. A., 1976, “A model for deposition of fibers in the human respiratory system,” Am. Ind. Hyg. Assoc. J., 37, pp. 73–89. [CrossRef] [PubMed]
Myojo, T., 1987, “Deposition of Fibrous Aerosol in Model Bifurcating Tubes,” J. Aerosol. Sci., 18, pp. 337–347. [CrossRef]
Myojo, T., 1990, “The Effect of Length and Diameter on Deposition of Fibrous Aerosol in a Model Lung Bifurcation,” J. Aerosol, Sci., 21(5), pp. 651–659. [CrossRef]
Myojo, T., and Takaya, M., 2001, “Estimation of Fibrous Aerosol Deposition in Upper Bronchi Based on Experimental Data With Model Bifurcation,” Indust. Health, 39, pp. 141–149. [CrossRef]
Weibel, E. R., 1963, “Principles and Methods for the Morphometric Study of the Lung and Other Organs,” Lab. Invest., 12, pp. 131–155. [PubMed]
Marijnissen, J., Zeckendorf, A., Lemkowitz, S., and Bibo, H., 1991, “Transport and Deposition of Uniform Respirable Fibres in a Physical Lung Model,” J. Aerosol Sci., 22(1), pp. S859–S862. [CrossRef]
Sussman, R. G., Cohen, B. S., and Lippmann, M., 1991, “Asbestos Fiber Deposition in a Human Tracheobronchial Cast: I. Experimental,” Inhalation Toxicol., 3, pp. 145–160. [CrossRef]
Crowe, C. T., Schwarzkopf, J. D., Sommerfeld, M., and Tsuji, Y., 2011, Multiphase Flows With Droplets and Particles, 2nd ed, CRC Press, Boca Raton, FL.
Chen, X., Zhong, W., Zhou, X., Jin, B., and Sun, B., 2012, “CFD-DEM Simulation of Particle Transport and Deposition in Pulmonary Airway,” Powder Technol., 228, pp. 309–318. [CrossRef]
Kleinstreuer, C., 2003, Two-Phase Flow: Theory and Applications, Taylor and Francis, New York.
Michaelides, E., 2003, “Hydrodynamic Force and Heat/Mass Transfer From Particles, Bubbles, and Drops—The Freeman Scholar Lecture,” J. Fluids Eng., 125, pp. 209–238. [CrossRef]
Kleinstreuer, C., 2006, Biofluid Dynamics: Principles and Selected Applications, CRC Press, Boca Raton, FL.
Bagchi, P., and Balachandar, S., 2002, “Shear versus Vortex-Induced Lift Force on a Rigid Sphere at Moderate Re,” J. Fluids Mech., 473, pp. 379–388. [CrossRef]
Zeng, L. Y., 2007, “Interaction Between a Spherical Particle and Wall-Bounded Flows at Finite Reynolds Number,” Ph.D. thesis, University of Illinois at Urbana-Champaign, Urbana, IL.
Loth, E., 2008, “Drag of Nano-Spherical Solid Particles of Regular and Irregular Shape,” Powder Technol., 182, pp. 342–353. [CrossRef]
White, F. M., 1991, Viscous Fluid Flow, 2nd ed., McGraw-Hill, New York.
Clift, R., and Gauvin, W. H., 1971, Motion of Entrained Particles in Gas Streams, Can. J. Chem. Eng., 49(4), pp. 439–448. [CrossRef]
Shimazaki, Y., Okubo, M., Yamamoto, T., and Yoshida, A., 2009, “Three-Dimensional Numerical Simulation of Nanoparticle Inhalation and Indoor Pollution Around Breathing Human,” J. Environ. Eng., 4(1), pp. 145–161. [CrossRef]
Yin, C., Rosendahl, L., Kaer, S. K., and Sorensen, H., 2003, “Modelling the Motion of Cylindrical Particle in a Nonuniform Flow,” Chem. Eng. Sci., 58, pp. 3489–3498. [CrossRef]
Loewenberg, M., 1993, “Stokes Resistance, Added Mass, and Basset Force for Arbitrarily Oriented, Finite-Length Cylinders,” Phys. Fluids, 5(3), pp. 765–767. [CrossRef]
Johnson, R. W., 1998, The Handbook of Fluid Dynamics, 1st ed., Springer-Verlag GmbH & Co., Heidelberg, Germany.
Kurose, R., and Komori, S., 1999, “Drag and Lift Forces on a Rotating Sphere in a Linear Shear Flow,” J. Fluid Mech., 384, pp. 183–206. [CrossRef]
Saffman, P. G., 1965, “The Life on a Small Sphere in a Slow Shear Flow,” J. Fluid Mech., 22, pp. 385–400. [CrossRef]
Lee, H., and Balachandar, S., 2010, “Drag and Lift Forces on a Spherical Particle Moving on a Wall in a Shear Flow at Finite Re,” J. Fluid Mech., 657, pp. 89–125. [CrossRef]
Högberg, S. M., Akerstedt, H. O., Lundstroem, T. S., and Freund, J. B., 2008, “Numerical Model for Fiber Transport in the Respiratory Airways,” Proceedings of the 19th International Symposium on Transport Phenomena, Reykjavik, Iceland.
McLaughlin, J. B., 1991, “Inertial Migration of a Small Sphere in Linear Shear Flows,” J. Fluid Mech., 224, pp. 261–274. [CrossRef]
Dandy, D. S., and Dwyer, H. A., 1990, “A Sphere in Shear Flow at Finite Reynolds Number: Effect of Shear on Particle Lift, Drag, and Heat Transfer,” J. Fluid Mech., 216, pp. 381–410. [CrossRef]
Cherukat, P., McLaughlin, J. B., and Graham, A. L., 1994, “The Inertial Lift on a Rigid Sphere Translating in a Linear Shear Flow Field,” Int. J. Multiphase Flow, 20(2), pp. 339–353. [CrossRef]
Mei, R., 1992, “An Approximate Expression for the Shear Lift Force on a Spherical Particle at Finite Reynolds Number,” Int. J. Multiphase Flow, 18(1), pp. 145–147. [CrossRef]
Donaldson, K., Aitken, R., Tran, L., Stone, V., Duffin, R., Forrest, G., and Alexander, A., 2006, “Carbon Nanotubes: A Review of their Properties in Relation to Pulmonary Toxicology and Workplace Safety,” Toxicol. Sci., 92(1), pp. 5–22. [CrossRef] [PubMed]
Bunner, B., and Tryggvason, G., 2003, “Effect of Bubble Deformation on the Properties of Bubbly Flows,” J. Fluid Mech., 495, pp. 77–118. [CrossRef]
Crowe, C. T., Troutt, T. R., and Chung, J. N., 1996, “Numerical Models for Two-Phase Turbulent Flows,” Ann. Rev. Fluid. Mech., 28, pp. 11–43. [CrossRef]
Joseph, D., 2001, “Interrogations of Direct Numerical Simulation of Solid-Liquid Flow,” Technical Report No. 26, University of Minnesota Supercomputing Institute, Minneapolis, MN.
Hu, H. H., Joseph, D. D., and Crochet, M., 1992, “Direct Simulation of Fluid Particle Motions,” J. Theor. Comput. Fluid Dyn., 3, pp. 285–306. [CrossRef]
Glowinski, R., Pan, T. W., Hesla, T. I., and Joseph, D. D., 1999, “A Distributed Lagrange Multiplier/Fictitious Domain Method for Particulate Flows,” Int. J. Multiphase Flow, 25, pp. 755–794. [CrossRef]
Lin, J., Shi, X., and You, Z., 2003, “Effects of the Aspect Ratio on the Sedimentation of a Fiber in Newtonian Fluids,” J. Aerosol Sci., 34, pp. 909–921. [CrossRef]
Li, Z., and Kleinstreuer, C., 2011, “Airflow Analysis in the Alveolar Region Using the Lattice-Boltzmann Method,” Med. Biol. Eng. Comput., 49(4), pp. 441–451. [CrossRef] [PubMed]
Hu, H. H., Patankar, A., and Zhu, M. Y., 2001, “Direct Numerical Simulations of Fluid-Solid Systems Using the Arbitrary Lagrangian-Eulerian Technique,” J. Comput. Phys., 169, pp. 427–462. [CrossRef]
Wadell, H., 1934, The Coefficient of Resistance as a Function of Reynolds Number for Solids of Various Shapes, J. Franklin Institute, 217, pp. 459–490.
Gabitto, J., and Tsouris, C., 2008, “Drag Coefficient and Settling Velocity for Particles of Cylindrical Shape,” Powder Technol., 183, pp. 314–322. [CrossRef]
Hölzer, A., and Sommerfeld, M., 2008, “New Simple Correlation Formula for the Drag Coefficient of Non-Spherical Particles,” Powder Technol., 184(3), pp. 361–365. [CrossRef]
Leith, D., 1987, “Drag on Nonspherical Objects,” Aerosol Sci. Technol., 6(2), pp. 153–161. [CrossRef]
Haider, A., and Levenspiel, O., 1989, “Drag Coefficient and Terminal Velocity of Spherical and Nonspherical Particles,” Powder Technol., 58, pp. 63–70. [CrossRef]
Ganser, G. H., 1993, “A Rational Approach to Drag Prediction of Spherical and Nonspherical Particles,” Powder Technol., 77, pp. 143–152. [CrossRef]
Chhabra, R. P., Agarwal, L., and Sinha, N. K., 1999, “Drag on Non-Spherical Particles: An Evaluation of Available Methods,” Powder Technol., 101, pp. 288–295. [CrossRef]
Chien, S. F., 1994, “Settling Velocity of Irregularly Shaped Particles,” SPE Drill. Complet., 9, pp. 281–289. [CrossRef]
Hartman, M., Trnka, O., and Svoboda, K., 1979, “Free Settling of Nonspherical Particles,” Ind. Eng. Chem. Res., 33, pp. 1979–1983. [CrossRef]
Thompson, T. L., and Clark, N. N., 1991, “A Holistic Approach to Particle Drag Prediction,” Powder Technol., 6, pp. 57–66. [CrossRef]
Fan, L., Mao, Z. S., and Yang, C., 2004, “Experiment on Sedimentation of Slender Particles With Large Aspect Ratio and Correlation of Drag Coefficient,” J. Ind. Eng. Chem. Res., 43(23), pp. 7664–7670. [CrossRef]
Tran-Cong, S., Gay, M., and Michaelides, E. E., 2004, “Drag Coefficients of Irregularly Shaped Particles,” Powder Technol., 139, pp. 21–32. [CrossRef]
Hoerner, S. F., 1965, Fluid-Dynamic Drag: Practical Information on Aerodynamic Drag and Hydrodynamic Resistance, Hoerner Fluid Dynamics, Midland Park, NJ.
Mando, M., and Rosendahl, L., 2010, “On the Motion of Non-Spherical Particles at High Reynolds Number,” Powder Technol., 202, pp. 1–13. [CrossRef]
Mao, Z. S., 2008, “Knowledge on Particle Swarm: The Important Basis for Multi-scale Numerical Simulation of Multiphase Flows,” Chin. J. Process Eng., 8(4), pp. 645–659. Available at http://en.cnki.com.cn/Article_en/CJFDTotal-HGYJ200804004.htm
Feng, Y., 2013, “Computational Analysis of Non-spherical Particle Dynamics in Airflow With Applications to Particle Transport and Deposition in Human Respiratory Models,” Ph.D. thesis, NC State University, Raleigh, NC.
Goldstein, H., Poole, C. P., and Safko, J., 1980, Classical Mechanics, Addison-Wesley, Boston, MA.
Clift, R., Grace, J. R., and Weber, M. E., 2005, Bubbles, Drops, and Particles, Dover Publications, Inc., Mineola, New York.
Shenoy, A. R., and Kleinstreuer, C., 2008, “Flow Over a Thin Circular Disk at Low to Moderate Reynolds Numbers,” J. Fluid Mech., 605, pp. 253–262. [CrossRef]
Shanley, K. T., and Ahmadi, G., 2011, “A Numerical Model for Simulating the Motion of Ellipsoidal Fibers Suspended in Low Reynolds Number Shear Flows,” Aerosol Sci. Technol., 45, pp. 838–848. [CrossRef]
Brenner, H., 1963, “The Stokes Resistance of An Arbitrary Particle,” Chem. Eng. Sci., 18, pp. 1–25. [CrossRef]
Fan, F. G., and Ahmadi, G., 1995, “A Sublayer Model for Wall Deposition of Ellipsoidal Particles in Turbulent Streams,” J. Aerosol Sci., 26(5), pp. 813–840. [CrossRef]
Richter, A., and Nikrityuk, P. A., 2012, “Drag Forces and Heat Transfer Coefficients for Spherical, Cuboidal and Ellipsoidal Particles in Cross Flow at Sub-Critical Reynolds Numbers,” Int. J. Heat Mass Transfer, 55, pp. 1343–1354. [CrossRef]
Harper, E. Y., and Chang, I., 1968, “Maximum Dissipation Resulting from Lift in a Slow Viscous Shear Flow,” J. Fluid Mech., 33(Part 2), pp. 209–225. [CrossRef]
Drew, D. A., and Lahey, R. T., Jr., 1987, “The Virtual Mass and Lift Force on a Sphere in Rotating and Straining Flow,”Int. J. Multiphase Flow, 25(6/7), pp. 1321–1372. [CrossRef]
Auton, T. R., 1987, “The Lift Force on a Spherical Body in a Rotational Flow,” J. Fluid Mech., 183, pp. 199–218. [CrossRef]
Longest, P. W., and Xi, J., 2007, “Effectiveness of Direct Lagrangian Tracking Models for Simulating Nanoparticle Deposition in the Upper Airways,” Aerosol Sci. Technol., 41, pp. 380–397. [CrossRef]
Jeffery, G. B., 1922, “The Motion of Ellipsoidal Particles Immersed in a Viscous Fluid,” Proc. R Soc. A, 102, pp. 161–179. [CrossRef]
Chu, K. W., and Yu, A. B., 2008, “Numerical Simulation of Complex Particle-Fluid Flows,” Powder Technol., 179(3), pp. 104–114. [CrossRef]
Cundall, P. A., and Strack, O. D. L., 1979, “A Discrete Numerical Model for Granular Assemblies,” Geotechnique, 29, pp. 47–65. [CrossRef]
O'Sullivan, C., 2011, Particulate Discrete Element Modelling: A Geomechanics Perspective, Spon Press, Florence, KY.
Kafui, K. D., Thornton, C., and Adams, M. J., 2002, “Discrete Particle-Continuum Fluid Modelling of Gas-Solid Fluidised Beds,” Chem. Eng. Sci., 57, pp. 2395–2410. [CrossRef]
Campbell, C. S., and Brennen, C. E., 1985, “Computer Simulation of Granular Shear Flows,” J. Fluid Mech., 151, pp. 167–188. [CrossRef]
Campbell, C. S., and Brennen, C. E., 1985, “Chute Flows of Granular Material: Some Computer Simulation,” ASME J. Appl. Mech., 52(1), pp. 172–178. [CrossRef]
Duran, J., 2000, Sands, Powders, and Grains: An Introduction to the Physics of Granular Materials, Springer, New York.
Zhu, H. P., Zhou, Z. Y., Yang, R. Y., Yu, A. B., 2007, “Discrete Particle Simulation of Particulate Systems: Theoretical Developments,” Chem. Eng. Sci., 62, pp. 3378–3396. [CrossRef]
Parry, A. J., and Millet, O., 2010, “Modeling Blockage of Particles in Conduit Constrictions: Dense Granular-Suspension Flow,” J. Fluid Eng., 132, p. 011302. [CrossRef]
Kloss, C., Goniva, C., Aichinger, G., and Pirker, S., 2009, “Comprehensive DEM-DPM-CFD Simulations-Model Synthesis, Experimental Validation and Scalability,” Proceedings of the Seventh International Conference on CFD in the Minerals and Process Industries, CSIRO, Melbourne, Australia.
Tao, H., Jin, B., Zhong, W., Wang, X., Ren, B., Zhang, Y., and Xiao, R., 2010, “Discrete Element Method Modeling of Non-Spherical Granular Flow in Rectnagular Hopper,” Chem. Eng. Process., 49(2), pp. 151–158. [CrossRef]
Zhou, Z. Y., Pinson, D., Zou, R. P., and Yu, A. B., 2009, “CFD-DEM Simulation of Gas Fluidization of Ellipsoidal Particles,” Proceedings of the Seventh International Conference on CFD in the Minerals and Process Industries, CSIRO, Melbourne, Australia.
Zhou, Z. Y., Zou, R. P., Pinson, D., and Yu, A. B., 2011, “Dynamic Simulation of the Packing of Ellipsoidal Particles,” Indust. Eng. Chem. Res., 50, pp. 9787–9798. [CrossRef]
Ren, B., Zhong, W. Q., Jin, B. S., Yuan, Z. L., and Lu, Yu., 2011, “Computational Fluid Dynamics (CFD)-Discrete Element Method (Dem) Simulation of Gas-Solid Turbulent Flow in a Cylindrical Spouted Bed With a Conival Base,” Energy Fuels, 29(9), pp. 4095–4105. [CrossRef]
Tian, L., 2008, “The Transport and Deposition of Ellipsoidal Fibers in Human Tracheobronchial Airways,” Ph D. thesis, Department of Mechanical and Aeronautical Engineering, Clarkson University, Potsdam, NY.
Gallily, I., and Eisner, A. D., 1979, “On the Orderly Nature of the Motion of Nonspherical Aerosol Particles: I. Deposition from a Laminar Flow,” J. Colloid Interface Sci., 68(2), pp. 320–337. [CrossRef]
Chen, Y. K., and Yu, C. P., 1991, “Sedimentation of Fibers from Laminar Flows in a Horizontal Circular Duct,” Aerosol Sci. Technol., 14, pp. 343–347. [CrossRef]
Högberg, S. M., Åkerstedt, H. O., Lundström, T. S., and Freund, J. B., 2010, “Respiratory Deposition of Fibers in the Non-inertial Regime—Development and Application of a Semi-analytical Model,” Aerosol Sci. Technol., 44(10), pp. 847–860. [CrossRef]
Högberg, S. M., Åkerstedt, H. O., Holmstedt, E., Lundström, T. S., and Sandström, T., 2012, “Time-Dependent Deposition of Micro-and Nanofibers in Straight Model Airways,” J. Fluids Eng., 134, p. 051208. [CrossRef]


Grahic Jump Location
Fig. 1

Estimated number of 2012 deaths caused by different cancers in the United States [1]

Grahic Jump Location
Fig. 2

Deaths for the ten leading causes of deaths in all ages of the United States in 2010 [2]

Grahic Jump Location
Fig. 3

Two-dimensional finite-element mesh in channel flow using the ALE method [66]

Grahic Jump Location
Fig. 4

Fixed triangular grid used in DLM computations [65]

Grahic Jump Location
Fig. 5

Incidence angle αi of nonspherical particle

Grahic Jump Location
Fig. 6

The rotations defining the Euler angles [87]

Grahic Jump Location
Fig. 7

Coordinate systems for nonspherical particle modeling

Grahic Jump Location
Fig. 8

Euler angles between coordinate x′y′z′ and coordinate x′′y′′z′′

Grahic Jump Location
Fig. 9

Saffman lift force for a particle in linear shear flow

Grahic Jump Location
Fig. 10

Total deposition efficiency comparisons between spherical particles and ellipsoidal particles with different aspect ratios in a subject-specific lung airway model [86]




Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related Journal Articles
Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In