0
Research Papers

Mechanics of Healthy and Functionally Diseased Mitral Valves: A Critical Review

[+] Author and Article Information
Ajit P. Yoganathan

e-mail: ajit.yoganathan@bme.gatech.edu
Wallace H. Coulter
Department of Biomedical Engineering,
Georgia Institute of Technology and Emory University,
Atlanta, GA 30332

1Corresponding author. Present address: Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology, 313 Ferst Drive, Suite 2119, Atlanta, GA 30332-0535.

Contributed by the Bioengineering Division of ASME for publication in the JOURNAL OF BIOMECHANICAL ENGINEERING. Manuscript received November 5, 2012; final manuscript received December 20, 2012; accepted manuscript posted December 22, 2012; published online February 7, 2013. Editor: Victor H. Barocas.

J Biomech Eng 135(2), 021007 (Feb 07, 2013) (16 pages) Paper No: BIO-12-1539; doi: 10.1115/1.4023238 History: Received November 05, 2012; Revised December 20, 2012; Accepted December 22, 2012

The mitral valve is a complex apparatus with multiple constituents that work cohesively to ensure unidirectional flow between the left atrium and ventricle. Disruption to any or all of the components—the annulus, leaflets, chordae, and papillary muscles—can lead to backflow of blood, or regurgitation, into the left atrium, which deleteriously effects patient health. Through the years, a myriad of surgical repairs have been proposed; however, a careful appreciation for the underlying structural mechanics can help optimize long-term repair durability and inform medical device design. In this review, we aim to present the experimental methods and significant results that have shaped the current understanding of mitral valve mechanics. Data will be presented for all components of the mitral valve apparatus in control, pathological, and repaired conditions from human, animal, and in vitro studies. Finally, current strategies of patient specific and noninvasive surgical planning will be critically outlined.

FIGURES IN THIS ARTICLE
<>
Copyright © 2013 by ASME
Your Session has timed out. Please sign back in to continue.

References

Savage, E. B., and Bolling, S. F., 2005, Atlas of Mitral Valve Repair, Lippincott Williams & Wilkins, New York.
Carpentier, A., Adams, D. H., and Filsoufi, F., 2010, Carpentier's Reconstructive Valve Surgery, Saunders, Philadelphia, PA.
Ormiston, J. A., Shah, P. M., Tei, C., and Wong, M., 1981, “Size and Motion of the Mitral Valve Annulus in Man. I. A Two-Dimensional Echocardiographic Method and Findings in Normal Subjects,” Circulation, 64, pp. 113–120. [CrossRef] [PubMed]
Chan, J. K. M., Merrifield, R., Wage, R. R., Symmonds, K., Cannell, T., Firmin, D. N., Pepper, J. R., Pennell, D. J., and Kilner, P. J., 2008, “Two-Dimensional M-Mode Display of the Mitral Valve From CMR Cine Acquisitions: Insights Into Normal Leaflet and Annular Motion,” J. Cardiovasc. Magn. Reson., 10, Paper No. A351. [CrossRef]
Boltwood, C. M., Tei, C., Wong, M., and Shah, P. M., 1983, “Quantitative Echocardiography of the Mitral Complex in Dilated Cardiomyopathy: The Mechanism of Functional Mitral Regurgitation,” Circulation, 68, pp. 498–508. [CrossRef] [PubMed]
Levine, R. A., Triulzi, M. O., Harrigan, P., and Weyman, A. E., 1987, “The Relationship of Mitral Annular Shape to the Diagnosis of Mitral Valve Prolapse,” Circulation, 75, pp. 756–767. [CrossRef] [PubMed]
Ahmad, R. M., Gillinov, A. M., Mccarthy, P. M., Blackstone, E. H., Apperson-Hansen, C., Qin, J. X., Agler, D., Shiota, T., and Cosgrove, D. M., 2004, “Annular Geometry and Motion in Human Ischemic Mitral Regurgitation: Novel Assessment With Three-Dimensional Echocardiography and Computer Reconstruction,” Ann. Thorac. Surg., 78, pp. 2063–2068. [CrossRef] [PubMed]
Rausch, M. K., Bothe, W., Kvitting, J. P., Swanson, J. C., Ingels, N. B., Jr., Miller, D. C., and Kuhl, E., 2011, “Characterization of Mitral Valve Annular Dynamics in the Beating Heart,” Ann. Biomed. Eng., 39(6), pp. 1690–1702. [CrossRef] [PubMed]
GormanJ. H., III, Jackson, J. B., Moainie, S. L., Enomoto, Y., and Gorman, R. C., 2004, “Influence of Inotropy and Chronotropy on the Mitral Valve Sphincter Mechanism,” Ann. Thorac. Surg., 77, pp. 852–858. [CrossRef] [PubMed]
Yiu, S. F., Enriquez-Sarano, M., Tribouilloy, C., Seward, J. B., and Tajik, A. J., 2000, “Determinants of the Degree of Functional Mitral Regurgitation in Patients With Systolic Left Ventricular Dysfunction: A Quantitative Clinical Study,” Circulation, 102(12), pp. 1400–1406. [CrossRef] [PubMed]
Veronesi, F., Corsi, C., Sugeng, L., Caiani, E. G., Weinert, L., Mor-Avi, V., Cerutti, S., Lamberti, C., and Lang, R. M., 2008, “Quantification of Mitral Apparatus Dynamics in Functional and Ischemic Mitral Regurgitation Using Real-Time 3-Dimensional Echocardiography,” J. Am. Soc. Echocardiogr., 21, pp. 347–354. [CrossRef] [PubMed]
Timek, T. A., Green, G. R., Tibayan, F. A., Lai, D. T., Rodriguez, F., Liang, D., Daughters, G. T., Ingels, J. N. B., and Miller, D. C., 2003, “Aorto-Mitral Annular Dynamics,” Ann. Thorac. Surg., 76(6), pp. 1944–1950. [CrossRef] [PubMed]
Levine, R. A., Handschumacher, M. D., Sanfilippo, A. J., Hagege, A. A., Harrigan, P., Marshall, J. E., and Weyman, A. E., 1989, “Three-Dimensional Echocardiographic Reconstruction of the Mitral Valve, With Implications for the Diagnosis of Mitral Valve Prolapse,” Circulation, 80(3), pp. 589–598. [CrossRef] [PubMed]
Gorman, J. H., III, Jackson, B. M., Enomoto, Y., and Gorman, R. C., 2004, “The Effect of Regional Ischemia on Mitral Valve Annular Saddle Shape,” Ann. Thorac. Surg., 77(2), pp. 544–548. [CrossRef] [PubMed]
Tibayan, F. A., Rodriguez, F., Langer, F., Zasio, M. K., Bailey, L., Liang, D., Daughters, G. T., Ingels, N. B., and Miller, D. C., 2003, “Annular Remodeling in Chronic Ischemic Mitral Regurgitation: Ring Selection Implications,” Ann. Thorac. Surg., 76(5), pp. 1549–1555. [CrossRef] [PubMed]
Ryan, L. P., Jackson, B. M., Hamamoto, H., Eperjesi, T. J., Plappert, T. J., St John-Sutton, M., Gorman, R. C., and Gorman, J. H., III, 2008, “The Influence of Annuloplasty Ring Geometry on Mitral Leaflet Curvature,” Ann. Thorac. Surg., 86(3), pp. 749–760. [CrossRef] [PubMed]
Komoda, T., Hetzer, R., Oellinger, J., Henryk, S., Hofmeister, J., Hübler, M., Felix, R., Uyama, C., and Maeta, H., 1997, “Mitral Annular Flexibility,” J. Cardiothorac. Surg., 12, pp. 102–109. [CrossRef]
Itoh, A., Ennis, D. B., Bothe, W., Swanson, J. C., Krishnamurthy, G., Nguyen, T. C., Ingels, N. B., Jr., and Miller, D. C., 2009, “Mitral Annular Hinge Motion Contribution to Changes in Mitral Septal-Lateral Dimension and Annular Area,” J. Thorac. Cardiovasc. Surg., 138(5), pp. 1090–1099. [CrossRef] [PubMed]
Kaplan, S. R., Bashein, G., Sheehan, F., Legget, M., Munt, B., Li, X.-N., Sivarajan, M., Bolson, E., Zeppa, M., Archa, M., and Martin, R. W., 2000, “Three-Dimensional Echocardiographic Assessment of Annular Shape Changes in the Normal and Regurgitant Valve,” Am. Heart J., 139, pp. 378–387. [CrossRef] [PubMed]
Salgo, I. S., Gorman, J. H., III, Gorman, R. C., Jackson, B., Bowen, F. W., Plappert, T., St John Sutton, M. G., and Edmunds, L. H., Jr., 2002, “Effect of Annular Shape on Leaflet Curvature in Reducing Mitral Leaflet Stress,” Circulation, 106(6), pp. 711–717. [CrossRef] [PubMed]
Gorman, J. H.Gorman, R. C.Jackson, B. M.Enomoto, Y.St. John-Sutton, M. G. and Edmunds, L. H., Jr., 2003, “Annuloplasty Ring Selection for Chronic Ischemic Mitral Regurgitation: Lessons From the Ovine Model,” Ann. Thorac. Surg., 76(5), pp. 1556–1563. [CrossRef] [PubMed]
Jimenez, J. H., Liou, S. W., Padala, M., He, Z., Sacks, M., Gorman, R. C., Gorman, J. H., III, and Yoganathan, A. P., 2007, “A Saddle-Shaped Annulus Reduces Systolic Strain on the Central Region of the Mitral Valve Anterior Leaflet,” J. Thorac. Cardiovasc. Surg., 134(6), pp. 1562–1568. [CrossRef] [PubMed]
Padala, M., Hutchison, R. A., Croft, L. R., Jimenez, J. H., Gorman, R. C., Gorman, J. H., III, Sacks, M. S., and Yoganathan, A. P., 2009, “Saddle Shape of the Mitral Annulus Reduces Systolic Strains on the P2 Segment of the Posterior Mitral Leaflet,” Ann, Thorac. Surg., 88(5), pp. 1499–1504. [CrossRef]
Jimenez, J. H., Soerensen, D. D., He, Z., He, S., and Yoganathan, A. P., 2003, “Effects of a Saddle Shaped Annulus on Mitral Valve Function and Chordal Force Distribution: An In Vitro Study,” Ann. Biomed. Eng., 31(10), pp. 1171–1181. [CrossRef] [PubMed]
Rausch, M. K., Bothe, W., Kvitting, J. P., Swanson, J. C., Miller, D. C., and Kuhl, E., 2012, “Mitral Valve Annuloplasty: A Quantitative Clinical and Mechanical Comparison of Different Annuloplasty Devices,” Ann. Biomed. Eng., 40(3), pp. 750–761. [CrossRef] [PubMed]
Hasenkam, J. M., Nygaard, H., Paulsen, P. K., Kim, W. Y., and Hansen, O. K., 1994, “What Force Can the Myocardium Generate on a Prosthetic Mitral Valve Ring?,” J. Heart Valve Dis., 3, pp. 324–329. [PubMed]
Shandas, R., Mitchell, M., Conrad, C., Knudson, O., Sorrell, J., Mahalingam, S., Fragoso, M., and Valdes-Cruz, L., 2001, “A General Method for Estimating Deformation and Forces Imposed In Vivo on Bioprosthetic Heart Valves With Flexible Annuli: In Vitro and Animal Validation Studies,” J. Heart Valve Dis., 10, pp. 495–504. [PubMed]
Siefert, A. W., Jimenez, J. H., Koomalsingh, K. J., West, D. S., Aguel, F., Shuto, T., Gorman, R. C., Gorman, J. H., III, and Yoganathan, A. P., 2012, “Dynamic Assessment of Mitral Annular Force Profile in an Ovine Model,” Ann. Thorac. Surg., 94(1), pp. 59–65. [CrossRef] [PubMed]
Siefert, A. W., Jimenez, J. H., West, D. S., Koomalsingh, K. J., Gorman, R. C., Gorman, J. H., III, and Yoganathan, A. P., 2012, “In-Vivo Transducer to Measure Dynamic Mitral Annular Forces,” J. Biomech., 45(8), pp. 1514–1516. [CrossRef] [PubMed]
Siefert, A. W., Jimenez, J. H., Koomalsingh, K. J., Aguel, F., West, D. S., Shuto, T., Snow, T. K., Gorman, R. C., Gorman, J. H., III, and Yoganathan, A. P., 2012, “Contractile Mitral Annular Forces are Reduced With Ischemic Mitral Regurgitation,” J. Thorac. Cardiovasc. Surg. (in press).
Jensen, M. O., Jensen, H., Smerup, M., Levine, R. A., Yoganathan, A. P., Nygaard, H., Hasenkam, J. M., and Nielsen, S. L., 2008, “Saddle-Shaped Mitral Valve Annuloplasty Rings Experience Lower Forces Compared With Flat Rings,” Circulation, 118(14 Suppl), pp. S250–S255. [CrossRef] [PubMed]
Jensen, M. Ø., Jensen, H., Nielsen, S. L., Smerup, M., Johansen, P., Yoganathan, A. P.Nygaard, H., and Hasenkam, J. M., 2008, “What Forces Act on a Flat Rigid Mitral Annuloplasty Ring?,” J. Heart Valve Dis., 17, pp. 267–275. [PubMed]
Gillinov, A. M., Blackstone, E., White, J., Howard, M., Ahkrass, R., Marullo, A., and Cosgrove, D. M., 2001, “Durability of Combined Aortic and Mitral Valve Repair,” Ann. Thorac. Surg., 72, pp. 20–27. [CrossRef] [PubMed]
He, S., Jimenez, J., He, Z., and Yoganathan, A. P., 2003, “Mitral Leaflet Geometry Perturbations With Papillary Muscle Displacement and Annular Dilatation: An In-Vitro Study of Ischemic Mitral Regurgitation,” J. Heart Valve Dis., 12(3), pp. 300-307. [PubMed]
Grande-Allen, K. J., and Liao, J., 2011, “The Heterogeneous Biomechanics and Mechanobiology of the Mitral Valve: Implications for Tissue Engineering,” Curr. Cardiol. Rep., 13(2), pp. 113–120. [CrossRef] [PubMed]
Fenoglio, J. J., Jr., Tuan-Duc-Pham, Wit, A. L., Bassett, A. L., and Wagner, B. M., 1972, “Canine Mitral Complex. Ultrastructure and Electromechanical Properties,” Circ. Res., 31(3), pp. 417–430. [CrossRef] [PubMed]
Kunzelman, K. S., Cochran, R. P., Chuong, C., Ring, W. S., Verrier, E. D., and Eberhart, R. D., 1993, “Finite Element Analysis of the Mitral Valve,” J. Heart Valve Dis., 2(3), pp. 326–340. [PubMed]
Grande-Allen, K. J., Calabro, A., Gupta, V., Wight, T. N., Hascall, V. C., and Vesely, I., 2004, “Glycosaminoglycans and Proteoglycans in Normal Mitral Valve Leaflets and Chordae: Association with Regions of Tensile and Compressive Loading,” Glycobiology, 14(7), pp. 621–633. [CrossRef] [PubMed]
Kunzelman, K. S., Cochran, R. P., Murphree, S., Ring, W., Verrier, E., and Eberhart, R., 1993, “Differential Collagen Distribution in the Mitral Valve and its Influence on Biomechanical Behaviour,” J. Heart Valve Dis., 2(2), pp. 236–244. [PubMed]
Kunzelman, K. S., Quick, D. W., and Cochran, R. P., 1998, “Altered Collagen Concentration in Mitral Valve Leaflets: Biochemical and Finite Element Analysis,” Ann. Thorac. Surg., 66(6 Suppl 1), pp. S198–S205. [CrossRef] [PubMed]
Kunzelman, K. S., and Cochran, R. P., 1992, “Stress/Strain Characteristics of Porcine Mitral Valve Tissue: Parallel Versus Perpendicular Collagen Orientation,” J. Card. Surg., 7(1), pp. 71–78. [CrossRef] [PubMed]
May-Newman, K., and Yin, F. C., 1995, “Biaxial Mechanical Behavior of Excised Porcine Mitral Valve Leaflets,” Am. J. Physiol. Heart Circ. Physiol., 269(4), pp. H1319–H1327.
Chen, L., Yin, F. C., and May-Newman, K., 2004, “The Structure and Mechanical Properties of the Mitral Valve Leaflet-Strut Chordae Transition Zone,” J. Biomech. Eng., 126(2), pp. 244–251. [CrossRef] [PubMed]
Imanaka, K., Takamoto, S., Ohtsuka, T., Oka, T., Furuse, A., and Omata, S., 2007, “The Stiffness of Normal and Abnormal Mitral Valves,” Ann. Thorac. Cardiovasc. Surg., 13(3), pp. 178–184. [PubMed]
Liao, J., Yang, L., Grashow, J., and Sacks, M. S., 2007, “The Relation Between Collagen Fibril Kinematics and Mechanical Properties in the Mitral Valve Anterior Leaflet,” J. Biomech. Eng., 129(1), pp. 78–87. [CrossRef] [PubMed]
Krishnamurthy, G., Ennis, D. B., Itoh, A., Bothe, W., Swanson, J. C., Karlsson, M., Kuhl, E., Miller, D. C., and Ingels, N. B., 2008, “Material Properties of the Ovine Mitral Valve Anterior Leaflet In Vivo From Inverse Finite Element Analysis,” Am. J. Physiol. Heart Circ. Physiol., 295(3), pp. H1141–H1149. [CrossRef] [PubMed]
Itoh, A., Krishnamurthy, G., Swanson, J. C., Ennis, D. B., Bothe, W., Kuhl, E., Karlsson, M., Davis, L. R., Miller, D. C., and Ingels, N. B., 2009, “Active Stiffening of Mitral Valve Leaflets in the Beating Heart,” Am. J. Physiol. Heart Circ. Physiol., 296(6), pp. H1766–H1773. [CrossRef] [PubMed]
Krishnamurthy, G., Itoh, A., Bothe, W., Swanson, J. C., Kuhl, E., Karlsson, M., Craig Miller, D., and Ingels, N. B., Jr., 2009, “Stress–Strain Behavior of Mitral Valve Leaflets in the Beating Ovine Heart,” J. Biomech., 42(12), pp. 1909–1916. [CrossRef] [PubMed]
Stephens, E. H., de Jonge, N., Mcneill, M. P., Durst, C. A., and Grande-Allen, K. J., 2010, “Age-Related Changes in Material Behavoir of Porcine Mitral and Aortic Valves and Correlation to Matrix Composition,” Tissue Eng. Part A, 16(3), pp. 867–878. [CrossRef] [PubMed]
Grashow, J., Sacks, M., Liao, J., and Yoganathan, A., 2006, “Planar Biaxial Creep and Stress Relaxation of the Mitral Valve Anterior Leaflet,” Ann. Biomed. Eng., 34(10), pp. 1509–1518. [CrossRef] [PubMed]
Grashow, J., Yoganathan, A., and Sacks, M., 2006, “Biaxial Stress–Stretch Behavior of the Mitral Valve Anterior Leaflet at Physiologic Strain Rates,” Ann. Biomed. Eng., 34(2), pp. 315–325. [CrossRef] [PubMed]
Skallerud, B., Prot, V., and Nordrum, I., 2011, “Modeling Active Muscle Contraction in Mitral Valve Leaflets During Systole: A First Approach,” Biomech. Model. Mechanobiol., 10(1), pp. 11–26. [CrossRef] [PubMed]
Sacks, M. S., He, Z., Baijens, L., Wanant, S., Shah, P., Sugimoto, H., and Yoganathan, A. P., 2002, “Surface Strains in the Anterior Leaflet of the Functioning Mitral Valve,” Ann. Biomed. Eng., 30(10), pp. 1281–1290. [CrossRef] [PubMed]
He, Z., Sacks, M., Baijens, L., Wanant, S., Shah, P., and Yoganathan, A. P., 2003, “Effects of Papillary Muscle Position on In-Vitro Dynami Strain on the Porcine MV,” J. Heart Valve Dis., 12(4), pp. 488–494. [PubMed]
He, Z., Ritchie, J., Grashow, J. S., Sacks, M. S., and Yoganathan, A. P., 2005, “In Vitro Dynamic Strain Behavior of the Mitral Valve Posterior Leaflet,” J. Biomech. Eng., 127(3), pp. 504–511. [CrossRef] [PubMed]
Sacks, M. S., Enomoto, Y., Graybill, J. R., Merryman, W. D., Zeeshan, A., Yoganathan, A. P., Levy, R. J., Gorman, R. C., and Gorman, J. H., III, 2006, “In-Vivo Dynamic Deformation of the Mitral Valve Anterior Leaflet,” Ann. Thorac. Surg., 82(4), pp. 1369–1377. [CrossRef] [PubMed]
Bothe, W., Swanson, J. C., Ingels, N. B., and Miller, D. C., 2010, “How Much Septal-Lateral Mitral Annular Reduction Do You Get With New Ischemic/Functional Mitral Regurgitation Annuloplasty Rings?,” J. Thorac. Cardiovasc. Surg., 140(1), pp. 117–121. [CrossRef] [PubMed]
Rausch, M., Bothe, W., Escobar-Kvitting, J.-P., Goktepe, S., Miller, C., and Kuhl, E., 2011, “In-Vivo Dynamic Strains of the Ovine Anterior Mitral Valve Leaflet,” J. Biomech., 44(6), pp. 1149–1157. [CrossRef] [PubMed]
Amini, R., Eckert, C. E., Koomalsingh, K., Mcgarvey, J., Minakawa, M., Gorman, J. H., Gorman, R. C., and Sacks, M. S., 2012, “On the In Vivo Deformation of the Mitral Valve Anterior Leaflet: Effects of Annular Geometry and Referential Configuration,” Ann. Biomed. Eng., 40(7), pp. 1455–1467. [CrossRef] [PubMed]
Salgo, I. S., Gorman, J. H., III, Gorman, R. C., Jackson, B. M., Bowen, F. W., Plappert, T., St John Sutton, M. G., and Edmunds, L. H., Jr., 2002, “Effect of Annular Shape on Leaflet Curvature in Reducing Mitral Leaflet Stress,” Circulation, 106(6), pp. 711–717. [CrossRef] [PubMed]
Maurer, G., 2009, “Mitral Leaflet in Functional Regurgitation,” Circulation, 120(4), pp. 275–277. [CrossRef] [PubMed]
Grande-Allen, K. J., Barber, J. E., Klatka, K. M., Houghtaling, P. L., Vesely, I., Moravec, C. S., and Mccarthy, P. M., 2005, “Mitral Valve Stiffening in End-Stage Heart Failure: Evidence of an Organic Contribution to Functional Mitral Regurgitation,” Journal of Thorac. Cardiovasc. Surg., 130(3), pp. 783–790. [CrossRef]
Chaput, M., Handschumacher, M. D., Guerrero, J. L., Holmvang, G., Dal-Bianco, J. P., Sullivan, S., Vlahakes, G. J., Hung, J., and Levine, R. A., 2009, “Mitral Leaflet Adaptation to Ventricular Remodeling,” Circulation, 120(11 suppl 1), pp. S99–S103. [CrossRef] [PubMed]
Chaput, M., Handschumacher, M. D., Tournoux, F., Hua, L., Guerrero, J. L., Vlahakes, G. J., and Levine, R. A., 2008, “Mitral Leaflet Adaptation to Ventricular Remodeling,” Circulation, 118(8), pp. 845–852. [CrossRef] [PubMed]
Timek, T. A., Lai, D. T., Dagum, P., Liang, D., Daughters, G. T., Ingels, N. B., and Miller, D. C., 2006, “Mitral Leaflet Remodeling in Dilated Cardiomyopathy,” Circulation, 114(1 suppl), pp. I-518–I-523. [CrossRef]
Stephens, E. H., Timek, T. A., Daughters, G. T., Kuo, J. J., Patton, A. M., Baggett, L. S., Ingels, N. B., Miller, D. C., and Grande-Allen, K. J., 2009, “Significant Changes in Mitral Valve Leaflet Matrix Composition and Turnover With Tachycardia-Induced Cardiomyopathy,” Circulation, 120(11 suppl 1), pp. S112–S119. [CrossRef] [PubMed]
Stephens, E. H., Nguyen, T. C., Itoh, A., Ingels, N. B., Miller, D. C., and Grande-Allen, K. J., 2008, “The Effects of Mitral Regurgitation Alone are Sufficient for Leaflet Remodeling,” Circulation, 118(14 suppl 1), pp. S243–S249. [CrossRef] [PubMed]
Dal-Bianco, J. P., Aikawa, E., Bischoff, J., Guerrero, J. L., Handschumacher, M. D., Sullivan, S., Johnson, B., Titus, J. S., Iwamoto, Y., Wylie-Sears, J., Levine, R. A., and Carpentier, A., 2009, “Active Adaptation of the Tethered Mitral Valve,” Circulation, 120(4), pp. 334–342. [CrossRef] [PubMed]
Rausch, M. K., Tibayan, F. A., Craig Miller, D., and Kuhl, E., 2012, “Evidence of Adaptive Mitral Leaflet Growth,” J. Mech. Behav. Biomed. Mater., 15, pp. 208–217. [CrossRef] [PubMed]
Lam, J. H., Ranganathan, N., Wigle, E. D., and Silver, M. D., 1970, “Morphology of the Human Mitral Valve. I. Chordae Tendineae: A New Classification,” Circulation, 41(3), pp. 449–458. [CrossRef] [PubMed]
Ranganathan, N., Lam, J. H., Wigle, E. D., and Silver, M. D., 1970, “Morphology of the Human Mitral Valve. II. The Valve Leaflets,” Circulation, 41(3), pp. 459–467. [CrossRef] [PubMed]
Liao, J., and Vesely, I., 2003, “A Structural Basis for the Size-Related Mechanical Properties of Mitral Valve Chordae Tendineae,” J. Biomech., 36(8), pp. 1125–1133. [CrossRef] [PubMed]
Sedransk, K. L., Grande-Allen, K. J., and Vesely, I., 2002, “Failure Mechanics of Mitral Valve Chordae Tendineae,” J. Heart Valve Dis., 11(5), pp. 644–650. [PubMed]
Ritchie, J., Jimenez, J., He, Z., Sacks, M. S., and Yoganathan, A. P., 2006, “The Material Properties of the Native Porcine Mitral Valve Chordae Tendineae: An In Vitro Investigation.,” J. Biomech., 39(6), pp. 1129–1135. [CrossRef] [PubMed]
Lim, K. O., and Boughner, D. R., 1976, “Morphology and Relationship to Extensibility Curves of Human Mitral Valve Chordae Tendineae,” Circ. Res., 39(4), pp. 580–585. [CrossRef] [PubMed]
Millington-Sanders, C., Meir, A., Lawrence, L., and Stolinski, C., 1998, “Structure of Chordae Tendineae in the Left Ventricle of the Human Heart,” J. Anat., 192(4), pp. 573–581. [CrossRef] [PubMed]
He, S., Weston, M. W., Lemmon, J., Jensen, M., Levine, R. A., and Yoganathan, A. P., 2000, “Geometric Distribution of Chordae Tendineae: An Important Anatomic Feature in Mitral Valve Function,” J. Heart Valve Dis., 9(4), pp. 495–501. [PubMed]
Obadia, J. F., Casali, C., Chassignolle, J. F., and Janier, M., 1997, “Mitral Subvalvular Apparatus: Different Functions of Primary and Secondary Chordae,” Circulation, 96(9), pp. 3124–3128. [CrossRef] [PubMed]
Goetz, W. A., Lim, H.-S., Lansac, E., Weber, P. A., Birnbaum, D. E., and Duran, C. M. G., 2003, “The Aortomitral Angle is Suspended by the Anterior Mitral Basal ‘Stay’ Chords,” Thorac. Cardiovasc. Surg., 51(4), pp. 190–195. [CrossRef] [PubMed]
Clark, R. E., 1973, “Stress-Strain Characteristics of Fresh and Frozen Human Aortic and Mitral Leaflets and Chordae Tendineae. Implications for Clinical Use,” J. Thorac. Cardiovasc. Surg., 66(2), pp. 202–208. [PubMed]
Lim, K. O., and Boughner, D. R., 1975, “Mechanical Properties of Human Mitral Valve Chordae Tendineae: Variation With Size and Strain Rate,” Can. J. Physiol. Pharmacol., 53(3), pp. 330–339. [CrossRef] [PubMed]
Lim, K. O., Boughner, D. R., and Smith, C. A., 1977, “Dynamic Elasticity of Human Mitral Valve Chordae Tendinease,” Can. J. Physiol. Pharmacol., 55(3), pp. 413–418. [CrossRef] [PubMed]
Kunzelman, K. S., and Cochran, R. P., 1990, “Mechanical Properties of Basal and Marginal Mitral Valve Chordae Tendineae,” ASAIO Trans., 36(3), pp. M405–M408. [PubMed]
Salisbury, P. F., Cross, C. E., and Rieben, P. A., 1963, “Chorda Tendinea Tension,” Am. J. Physiol., 205, pp. 385–392. [PubMed]
Nielsen, S. L., Soerensen, D. D., Libergren, P., Yoganathan, A. P., and Nygaard, H., 2004, “Miniature C-Shaped Transducers for Chordae Tendineae Force Measurements,” Ann. Biomed. Eng., 32(8), pp. 1050–1057. [CrossRef] [PubMed]
Lomholt, M., Nielsen, S. L., Hansen, S. B., Andersen, N. T., and Hasenkam, J. M., 2002, “Differential Tension Between Secondary and Primary Mitral Chordae in an Acute In-Vivo Porcine Model,” J. Heart Valve Dis., 11(3), pp. 337–345. [PubMed]
Nielsen, S. L., Hansen, S. B., Nielsen, K. O., Nygaard, H., Paulsen, P. K., and Hasenkam, J. M., 2005, “Imbalanced Chordal Force Distribution Causes Acute Ischemic Mitral Regurgitation: Mechanistic Insights From Chordae Tendineae Force Measurements in Pigs,” J. Thorac. Cardiovasc. Surg., 129(3), pp. 525–531. [CrossRef] [PubMed]
Nielsen, S. L., Nygaard, H., Fontaine, A. A., Hasenkam, J. M., He, S., Andersen, N. T., and Yoganathan, A. P., 1999, “Chordal Force Distribution Determines Systolic Mitral Leaflet Configuration and Severity of Functional Mitral Regurgitation,” J. Am. Coll. Cardiol., 33(3), pp. 843–853. [CrossRef] [PubMed]
Nielsen, S. L., Nygaard, H., Mandrup, L., Fontaine, A. A., Hasenkam, J. M., He, S., and Yoganathan, A. P., 2002, “Mechanism of Incomplete Mitral Leaflet Coaptation—Interaction of Chordal Restraint and Changes in Mitral Leaflet Coaptation Geometry. Insight From In Vitro Validation of the Premise of Force Equilibrium,” J. Biomech. Eng., 124(5), pp. 596–608. [CrossRef] [PubMed]
Nielsen, S. L., Timek, T. A., Green, G. R., Dagum, P., Daughters, G. T., Hasenkam, J. M., Bolger, A. F., Ingels, N. B., and Miller, D. C., 2003, “Influence of Anterior Mitral Leaflet Second-Order Chordae Tendineae on Left Ventricular Systolic Function,” Circulation, 108(4), pp. 486–491. [CrossRef] [PubMed]
Jimenez, J. H., Soerensen, D. D., He, Z., Ritchie, J., and Yoganathan, A. P., 2005, “Mitral Valve Function and Chordal Force Distribution Using a Flexible Annulus Model: An In Vitro Study.,” Ann. Biomed. Eng., 33(5), pp. 557–566. [CrossRef] [PubMed]
Jimenez, J. H., Soerensen, D. D., He, Z., Ritchie, J., and Yoganathan, A. P., 2005, “Effects of Papillary Muscle Position on Chordal Force Distribution: An In-Vitro Study,” J. Heart Valve Dis., 14(3), pp. 295–302. [PubMed]
Jimenez-Mejia, J. H., 2003, “The Effects of Mitral Annular Dynamics and Papillary Muscle Position of Chordal Force Distribution and Valve Function: An In Vitro Study,” M.S. thesis, Georgia Institute of Technology, Atlanta, GA.
Granier, M., Jensen, M. O., Honge, J. L., Bel, A., Menasché, P., Nielsen, S. L., Carpentier, A., Levine, R. A., and Hagège, A. A., 2011, “Consequences of Mitral Valve Prolapse on Chordal Tension: Ex Vivo and In Vivo Studies in Large Animal Models,” J. Thorac. Cardiovasc. Surg., 142(6), pp. 1585–1587. [CrossRef] [PubMed]
He, Z., and Jowers, C., 2009, “A Novel Method to Measure Mitral Valve Chordal Tension,” J. Biomech. Eng., 131(1), p. 014501. [CrossRef] [PubMed]
He, S., Fontaine, A. A., Schwammenthal, E., Yoganathan, A. P., and Levine, R. A., 1997, “Integrated Mechanism for Functional Mitral Regurgitation: Leaflet Restriction Versus Coapting Force: In Vitro Studies,” Circulation, 96(6), pp. 1826–1834. [CrossRef] [PubMed]
Padala, M., Gyoneva, L., and Yoganathan, A. P., 2012, “Effect of Anterior Strut Chordal Transection on the Force Distribution on the Marginal Chordae of the Mitral Valve,” J. Thorac. Cardiovasc. Surg., 144(3), pp. 624–633. [CrossRef] [PubMed]
Nielsen, S. L., Lomholt, M., Johansen, P., Hansen, S. B., Andersen, N. T., and Hasenkam, J. M., 2011, “Mitral Ring Annuloplasty Relieves Tension of the Secondary but Not Primary Chordae Tendineae in the Anterior Mitral Leaflet,” J. Thorac. Cardiovasc. Surg., 141(3), pp. 732–737. [CrossRef] [PubMed]
Ostli, B., Vester-Petersen, J., Askov, J. B., Honge, J. L., Levine, R. A., Hagège, A., Nielsen, S. L., Hasenkam, J. M., Nygaard, H., and Jensen, M. O., 2012, “In Vitro System for Measuring Chordal Force Changes Following Mitral Valve Patch Repair,” Cardiovasc. Eng. Technol., 3(3), pp. 263–268. [CrossRef]
Messas, E., Guerrero, J. L., Handschumacher, M. D., Conrad, C., Chow, C. M., Sullivan, S., Yoganathan, A. P., and Levine, R. A., 2001, “Chordal Cutting: A New Therapeutic Approach for Ischemic Mitral Regurgitation,” Circulation, 104(16), pp. 1958–1963. [CrossRef] [PubMed]
He, Z., and Jowers, C. W., 2008, “Effect of Mitral Valve Strut Chord Cutting on Marginal Chord Tension,” J. Heart Valve Dis., 17(6), pp. 628–634. [PubMed]
Quill, J. L., Hill, A. J., Laske, T. G., Alfieri, O., and Iaizzo, P. A., 2009, “Mitral Leaflet Anatomy Revisited,” J. Thorac. Cardiovasc. Surg., 137, pp. 1077–1081. [CrossRef] [PubMed]
Degandt, A. A., Weber, P. A., Saber, H. A., and Duran, C. M. G., 2007, “Mitral Valve Basal Chordae: Comparative Anatomy and Terminology,” Ann. Thorac. Surg., 84, pp. 1250–1255. [CrossRef] [PubMed]
Anderson, R. H., and Kanani, M., 2007, “Mitral Valve Repair: Critical Analysis of the Anatomy Discussed,” Multimedia Manual Cardiothoracic Surg., 0219, pp. 1–9. [CrossRef]
Joudinaud, T. M., Kegel, C. L., Flecher, E. M., Weber, P. A., Lansac, E., Hvass, U., and Duran, C. M. G., 2007, “The Papillary Muscles as Shock Absorbers of the Mitral Valve Complex. An Experimental Study,” Eur. J. Cardiothorac. Surg., 32(1), pp. 96–101. [CrossRef] [PubMed]
Gorman, J. H., Gorman, R. C., Jackson, B. M., Hiramatsu, Y., Gikakis, N., Kelley, S. T., Sutton, M. G., Plappert, T., and Edmunds, L. H., 1997, “Distortions of the Mitral Valve in Acute Ischemic Mitral Regurgitation,” Ann. Thorac. Surg., 64(4), pp. 1026–1031. [CrossRef] [PubMed]
Madu, E. C., Baugh, D. S., D'Cruz, I. A., and Johns, C., 2001, “Left Ventricular Papillary Muscle Morphology and Function in Left Ventricular Hypertrophy and Left Ventricular Dysfunction,” Med. Sci. Monit., 7(6), pp. 1212–1218. [PubMed]
Hashim, S. R., Fontaine, A., He, S., Levine, R. A., and Yoganathan, A. P., 1997, “A Three-Component Force Vector Cell for In Vitro Quantification of the Force Exerted by the Papillary Muscle on the Left Ventricular Wall,” J. Biomech, 30(10), pp. 1071–1075. [CrossRef] [PubMed]
Jensen, M. Ø. J., Fontaine, A. A., and Yoganathan, A. P., 2001, “Improved In Vitro Quantification of the Force Exerted by the Papillary Muscle on the Left Ventricular Wall: Three-Dimensional Force Vector Measurement System,” Ann. Biomed. Eng., 29(5), pp. 406–413. [CrossRef] [PubMed]
Askov, J. B., Honge, J. L., Jensen, M. O., Nygaard, H., Hasenkam, J. M., and Nielsen, S. L., 2012, “Significance of Force Transfer in Mitral Valve-Left Ventricular Interaction: In Vivo Assessment,” J. Thorac. Cardiovasc. Surg. (in press).
Wong, V. M., Wenk, J. F., Zhang, Z., Cheng, G., Acevedo-Bolton, G., Burger, M., Saloner, D. A., Wallace, A. W., Guccione, J. M., Ratcliffe, M. B., and Ge, L., 2012, “The Effect of Mitral Annuloplasty Shape in Ischemic Mitral Regurgitation: A Finite Element Simulation,” Ann. Thorac. Surg., 93(3), pp. 776–782. [CrossRef] [PubMed]
Prot, V., Haaverstad, R., and Skallerud, B., 2009, “Finite Element Analysis of the Mitral Apparatus: Annulus Shape Effect and Chordal Force Distribution,” Biomech. Model. Mechanobiol., 8(1), pp. 43–55. [CrossRef] [PubMed]
Votta, E., Maisano, F., Bolling, S. F., Alfieri, O., Montevecchi, F. M., and Redaelli, A., 2007, “The Geoform Disease-Specific Annuloplasty System: A Finite Element Study,” Ann. Thorac. Surg., 84(1), pp. 92–101. [CrossRef] [PubMed]
Mansi, T., Voigt, I., Georgescu, B., Zheng, X., Mengue, E. A., Hackl, M., Ionasec, R. I., Noack, T., Seeburger, J., and Comaniciu, D., 2012, “An Integrated Framework for Finite-Element Modeling of Mitral Valve Biomechanics from Medical Images: Application to Mitralclip Intervention Planning,” Med. Image Anal., 16(7), pp. 1330–1346. [CrossRef] [PubMed]
Avanzini, A., 2008, “A Computational Procedure for Prediction of Structural Effects of Edge-To-Edge Repair on Mitral Valve,” J. Biomech. Eng., 130(3), 031015. [CrossRef] [PubMed]
Reimink, M. S., Kunzelman, K. S., and Cochran, R. P., 1996, “The Effect of Chordal Replacement Suture Length on Function and Stresses in Repaired Mitral Valves: A Finite Element Study,” J. Heart Valve Dis., 5(4), pp. 365–375. [PubMed]
Kunzelman, K., Reimink, M. S., Verrier, E. D., and Cochran, R. P., 1996, “Replacement of Mitral Valve Posterior Chordae Tendineae With Expanded Polytetrafluoroethylene Suture: A Finite Element Study,” J. Card. Surg., 11(2), pp. 136–145. [CrossRef] [PubMed]
Xu, C., Brinster, C. J., Jassar, A. S., Vergnat, M., Eperjesi, T. J., Gorman, R. C., Gorman, J. H., and Jackson, B. M., 2010, “A Novel Approach to In Vivo Mitral Valve Stress Analysis,” Am. J. Physiol., 299(6), pp. H1790–H1794. [CrossRef]
Votta, E., Caiani, E., Veronesi, F., Soncini, M., Montevecchi, F. M., and Redaelli, A., 2008, “Mitral Valve Finite-Element Modelling From Ultrasound Data: A Pilot Study for a New Approach to Understand Mitral Function and Clinical Scenarios,” Philos. Trans. R. Soc. London, Ser. A, 366(1879), pp. 3411–3434. [CrossRef]
Wang, Q., and Sun, W., 2013, “Finite Element Modeling of Mitral Valve Dynamic Deformation Using Patient-Specific Multi-Slices Computed Tomography Scans,” Ann. Biomed. Eng., 41(1), pp. 142–153. [CrossRef] [PubMed]
Lim, K., Yeo, J., and Duran, C. M., 2005, “Three-Dimensional Asymmetrical Modeling of the Mitral Valve: A Finite Element Study With Dynamic Boundaries,” J. Heart Valve Dis., 14(3), pp. 386–392. [PubMed]
Stevanella, M., Votta, E., and Redaelli, A., 2009, “Mitral Valve Finite Element Modeling: Implications of Tissues' Nonlinear Response and Annular Motion,” J. Biomech. Eng., 131(12), p. 121010. [CrossRef] [PubMed]
Padala, M., Sacks, M. S., Liou, S. W., Balachandran, K., He, Z., and Yoganathan, A. P., 2010, “Mechanics of the Mitral Valve Strut Chordae Insertion Region,” J. Biomech. Eng., 132(8), p. 081004. [CrossRef] [PubMed]
Cochran, R. P., and Kunzelman, K. S., 1998, “Effect of Papillary Muscle Position on Mitral Valve Function: Relationship to Homografts,” Ann. Thorac. Surg., 66(6 Suppl 1), pp. S155–S161. [CrossRef] [PubMed]
Prot, V., Skallerud, B., and Holzapfel, G. A., 2007, “Transversely Isotropic Membrane Shells With Application to Mitral Valve Mechanics. Constitutive Modelling and Finite Element Implementation,” Int. J. Numer. Methods Eng., 71(8), pp. 987–1008. [CrossRef]
Einstein, D. R., Kunzelman, K. S., Reinhall, P., Nicosia, M., and Cochran, R. P., 2005, “Non-Linear Fluid-Coupled Model of the Mitral Valve,” J. Heart Valve Dis., 14(3), pp. 376–385. [PubMed]
Dal Pan, F., Donzella, G., Fucci, C., and Schreiber, M., 2005, “Structural Effects of an Innovative Surgical Technique to Repair Heart Valve Defects,” J. Biomech., 38(12), pp. 2460–2471. [CrossRef] [PubMed]
Wenk, J. F., Zhang, Z., Cheng, G., Malhotra, D., Acevedo-Bolton, G., Burger, M., Suzuki, T., Saloner, D. A., Wallace, A. W., Guccione, J. M., and Ratcliffe, M. B., 2010, “First Finite Element Model of the Left Ventricle With Mitral Valve: Insights Into Ischemic Mitral Regurgitation,” Ann. Thorac. Surg., 89(5), pp. 1546–1553. [CrossRef] [PubMed]
Lau, K. D., Díaz-Zuccarini, V., Scambler, P., and Burriesci, G., 2011, “Fluid–Structure Interaction Study of the Edge-To-Edge Repair Technique on the Mitral Valve,” J. Biomech., 44(13), pp. 2409–2417. [CrossRef] [PubMed]
Rabbah, J.-P., Saikrishnan, N., and Yoganathan, A., 2012, “A Novel Left Heart Simulator for the Multi-Modality Characterization of Native Mitral Valve Geometry and Fluid Mechanics,” Ann. Biomed. Eng. (in press).

Figures

Grahic Jump Location
Fig. 1

Mitral valve: The ventricular side of a porcine mitral valve is displayed, highlighting the mitral leaflets, chordae tendineae, and papillary muscles. The valve was excised from an explanted heart and cut in half at the P2 scallop of the posterior leaflet.

Grahic Jump Location
Fig. 2

Forces acting on the mitral apparatus: Overall mitral force balance requires the structural interplay between each of the individual components. This is most commonly disrupted in functional mitral valve disease where left atrial and ventricular dilation lead to restricted leaflet closure and mitral regurgitation.

Grahic Jump Location
Fig. 3

Mitral annular force transducers: (a) Instrumented bileaflet mechanical heart valve (adapted with permission from Hasenkam et al. [26]), (b) apical-basal annuloplasty force transducer (adapted with permission from Jensen et al. [32]), and (c) in-plane annular force transducer (adapted with permission from Siefert et al. [29])

Grahic Jump Location
Fig. 4

Mitral leaflets: Atrial view of the mitral leaflets during systole shows the anterior leaflet extends to cover two-thirds of the mitral orifice. The posterior leaflet is comprised of three scallops P1, P2, and P3, which are opposed by similarly named regions of the anterior leaflet. AC: anterior commissure. PC: posterior commissure.

Grahic Jump Location
Fig. 5

Histological cross-section of mitral leaflets: Histological cross-sections of the mitral leaflets reveal an organized layered structure. In addition to elastin, collagen (main load bearing element) and proteoglycans, the mitral leaflets are known to contain smooth muscle cells, nonmylenated nerve fibers, and vasculature at their base. (Images adapted with permission from Grande-Allen et al. [35]).

Grahic Jump Location
Fig. 6

Typical leaflet stress-strain curve: Nonlinear stress strain curve of the mitral leaflets shows directionally dependent response and minimal hysteresis. There is minimal stress developed in the “toe” region due to the uncrimping of the collagen fibers. A nonlinear transition region (recruitment and alignment of collagen fibers) is followed by a linear, high tensile modulus regime (locking of collagen fibers). (Image adapted with permission from Grashow et al. [51]).

Grahic Jump Location
Fig. 7

Leaflet strains: (Top Panel) Superficial grids marked on mitral leaflets include tissue marker dye (in vitro), sonomicrometry crystals (image courtesy of Dr. Gorman), and radio-opaque markers (image adapted with permission from Rausch et al. [69]). (Bottom Panel) Leaflet strains calculated over the cardiac cycle show large and rapid aniosotropic stretch. A plateau is observed during peak systole as the collagen fibers lock preventing further deformation. (Images adapted with permission from Sacks et al. [56]).

Grahic Jump Location
Fig. 8

Leaflet strain distribution: in vivo ovine areal, circumferential, and radial strains are shown at maximum left ventricular pressure. The strain is anisotropic and largest in the radial direction due to the preferential alignment of collagen fibers. The largest stretch is observed at the free edge, which helps create redundant coaptation. (Image adapted with permission from Rausch et al. [58]).

Grahic Jump Location
Fig. 9

Chordal and papillary muscle force transducers: Miniature C-arm force transducers selectively record chordal forces throughout the cardiac cycle (Image adapted with permission from Neilsen et al. [85]). Similarly, force transducers sutured between severed papillary muscles record forces throughout the cardiac cycle (Image adapted with permission from Askov et al. [110]).

Grahic Jump Location
Fig. 10

Patient specific computational modeling: Patient specific anatomical mitral valve models derived from CT (left) and three-dimensional echocardiography (right) will ultimately be used for predictive surgical planning. CT imaging is better capable of capturing the detailed chordal structure. (Images adapted with permission from Wang et al. [120] and Mansi et al. [114]).

Tables

Errata

Discussions

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related Journal Articles
Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In