0
Research Papers

Quantifying Effect of Intraplaque Hemorrhage on Critical Plaque Wall Stress in Human Atherosclerotic Plaques Using Three-Dimensional Fluid-Structure Interaction Models

[+] Author and Article Information
Xueying Huang

School of Mathematical Sciences,
Xiamen University,
Xiamen, Fujian 361005, P. R. C.;
Mathematical Sciences Department,
Worcester Polytechnic Institute,
Worcester, MA 01609
e-mail: xhuang@xmu.edu.cn

Chun Yang

Mathematical Sciences Department,
Worcester Polytechnic Institute,
Worcester, MA 01609;
School of Mathematics,
Beijing Normal University, Beijing 100875, P. R. C.

Gador Canton

Department of Mechanical Engineering,
University of Washington,
Seattle, WA 98195

Chun Yuan

Deparment of Radiology,
University of Washington,
Seattle, WA 98195

Dalin Tang

Life Science and Biomedical Engineering Institute,
Southeast University,
Nanjing, Jiangsu 210096, P. R. C.;
Mathematical Sciences Department,
Worcester Polytechnic Institute,
Worcester, MA 01609

1Corresponding author. Present address: School of Mathematical Sciences, Xiamen University, Xiamen, Fujian 361005, P. R. C.

Contributed by the Bioengineering Division of ASME for publication in the JOURNAL OF BIOMECHANICAL ENGINEERING Manuscript received June 13, 2012; final manuscript received October 8, 2012; accepted manuscript posted October 25, 2012; published online November 27, 2012. Assoc. Editor: Ender A. Finol.

J Biomech Eng 134(12), 121004 (Nov 27, 2012) (9 pages) doi:10.1115/1.4007954 History: Received June 13, 2012; Revised October 08, 2012; Accepted October 25, 2012

Recent magnetic resonance studies have indicated that intraplaque hemorrhage (IPH) may accelerate plaque progression and play an important role in plaque destabilization. However, the impact of hemorrhage on critical plaque wall stress (CPWS) and strain (CPWSn) has yet to be determined. The objective of this study was to assess the effect of the presence and size of IPH on wall mechanics. The magnetic resonance image (MRI) of one patient with histology-confirmed IPH was used to build eight 3D fluid-structure interaction (FSI) models by altering the dimensions of the existing IPH. As a secondary end point, the combined effect of IPH and fibrous cap thickness (FCT) was assessed. A volume curve fitting method (VCFM) was applied to generate a mesh that would guarantee numerical convergence. Plaque wall stress (PWS), strain (PWSn), and flow shear stress (FSS) were extracted from all nodal points on the lumen surface for analysis. Keeping other conditions unchanged, the presence of intraplaque hemorrhage caused a significant increase (27.5%) in CPWS; reduced FCT caused an increase of 22.6% of CPWS. Similar results were found for CPWSn. Furthermore, combination of IPH presence, reduced FCT, and increased IPH volume caused an 85% and 75% increase in CPWS and CPWSn, respectively. These results show that intraplaque hemorrhage has considerable impact on plaque stress and strain conditions and accurate quantification of IPH could lead to more accurate assessment of plaque vulnerability. Large-scale studies are needed to further validate our findings.

FIGURES IN THIS ARTICLE
<>
Copyright © 2012 by ASME
Your Session has timed out. Please sign back in to continue.

References

Carr, S., Farb, A., Pearce, W. H., Virmani, R., and Yao, J. S., 1996, “Atherosclerotic Plaque Rupture in Symptomatic Carotid Artery Stenosis,” J. Vasc. Surg., 23(5), pp. 755–765. [CrossRef] [PubMed]
Naghavi, M., Libby, P., Falk, E., Casscells, S. W., Litovsky, S., Rumberger, J., Badimon, J. J., Stefanadis, C., Moreno, P., Pasterkamp, G., Fayad, Z., Stone, P. H., Waxman, S., Raggi, P., Madjid, M., Zarrabi, A., Burke, A., Yuan, C., Fitzgerald, P. J., Siscovick, D. S., de Korte, C. L., Aikawa, M., Juhani Airaksinen, K. E., Assmann, G., Becker, C. R., Chesebro, J. H., Farb, A., Galis, Z. S., Jackson, C., Jang, I. K., Koenig, W., Lodder, R. A., March, K., Demirovic, J., Navab, M., Priori, S. G., Rekhter, M. D., Bahr, R., Grundy, S. M., Mehran, R., Colombo, A., Boerwinkle, E., Ballantyne, C., Insull, W., Jr., Schwartz, R. S., Vogel, R., Serruys, P. W., Hansson, G. K., Faxon, D. P., Kaul, S., Drexler, H., Greenland, P., Muller, J. E., Virmani, R., Ridker, P. M., Zipes, D. P., Shah, P. K., and Willerson, J. T., 2003, “From Vulnerable Plaque to Vulnerable Patient: A Call for New Definitions and Risk Assessment Strategies: Part I,” Circulation, 108(14), pp. 1664–1672. [CrossRef] [PubMed]
Naghavi, M., Libby, P., Falk, E., Casscells, S. W., Litovsky, S., Rumberger, J., Badimon, J. J., Stefanadis, C., Moreno, P., Pasterkamp, G., Fayad, Z., Stone, P. H., Waxman, S., Raggi, P., Madjid, M., Zarrabi, A., Burke, A., Yuan, C., Fitzgerald, P. J., Siscovick, D. S., de Korte, C. L., Aikawa, M., Juhani Airaksinen, K. E., Assmann, G., Becker, C. R., Chesebro, J. H., Farb, A., Galis, Z. S., Jackson, C., Jang, I. K., Koenig, W., Lodder, R. A., March, K., Demirovic, J., Navab, M., Priori, S. G., Rekhter, M. D., Bahr, R., Grundy, S. M., Mehran, R., Colombo, A., Boerwinkle, E., Ballantyne, C., Insull, W., Jr., Schwartz, R. S., Vogel, R., Serruys, P. W., Hansson, G. K., Faxon, D. P., Kaul, S., Drexler, H., Greenland, P., Muller, J. E., Virmani, R., Ridker, P. M., Zipes, D. P., Shah, P. K., and Willerson, J. T., 2003, “From Vulnerable Plaque to Vulnerable Patient: A Call for New Definitions and Risk Assessment Strategies: Part II,” Circulation, 108(15), pp. 1772–1778. [CrossRef] [PubMed]
Saam, T., Ferguson, M. S., Yarnykh, V. L., Takaya, N., Xu, D., Polissar, N. L., Hatsukami, T. S., and Yuan, C., 2005, “Quantitative Evaluation of Carotid Plaque Composition by In Vivo MRI,” Arterioscler., Thromb., Vasc. Biol., 25(1), pp. 234–239. [CrossRef]
Yuan, C., Mitsumori, L. M., Beach, K. W., and Maravilla, K. R., 2001, “Special Review: Carotid Atherosclerotic Plaque: Noninvasive MR Characterization and Identification of Vulnerable Lesions,” Radiology, 221, pp. 285–299. [CrossRef] [PubMed]
Yuan, C., Zhang, S. X., Polissar, N. L., Echelard, D., Ortiz, G., Davis, J. W., Ellington, E., Ferguson, M. S., and Hatsukami, T. S., 2002, “Identification of Fibrous Cap Rupture With Magnetic Resonance Imaging is Highly Associated With Recent Transient Ischemic Attack or Stroke,” Circulation, 105(2):181–185. [CrossRef] [PubMed]
Fuster, V., Cornhill, J. F., Dinsmore, R. E., Fallon, J. T., Insull, W., Libby, P., Nissen, S., Rosenfeld, M. E., and Wagner, W. D., eds., 1998, The Vulnerable Atherosclerotic Plaque: Understanding, Identification, and Modification, AHA Monograph Series, Futura Publishing, Armonk, NY.
Barnett, H. J., Taylor, D. W., Eliasziw, M., Fox, A. J., Ferguson, G. G., Haynes, R. B., Rankin, R. N., Clagett, G. P., Hachinski, V. C., Sackett, D. L., Thorpe, K. E., Meldrum, H. E., and Spence, J. D., 1998, “Benefit of Carotid Endarterectomy in Patients With Symptomatic Moderate or Severe Stenosis. North American Symptomatic Carotid Endarterectomy Trial Collaborators,” N. Engl. J. Med., 339(20), pp. 1415–1425. [CrossRef] [PubMed]
Hatsukami, T. S., and YuanC., 2010, “MRI in the Early Identification and Classification of High-Risk Atherosclerotic Carotid Plaques,” Imaging Med., 2(1), pp. 63–75. [CrossRef] [PubMed]
Rothwell, P. M., Gutnikov, S. A., and Warlow, C. P., 2003, “European Carotid Surgery Trialist's Collaboration Reanalysis of the Final Results of the European Carotid Surgery Trial,” Stroke, 34(2), pp. 514–523. [CrossRef] [PubMed]
Underhill, H. R., Hatsukami, T. S., Fayad, Z. A., Fuster, V., and Yuan, C., 2010, “MRI of Carotid Atherosclerosis: Clinical Implications and Future Directions,” Nat. Rev. Cardiol., 7(3), pp. 165–173. [CrossRef] [PubMed]
Richardson, P. D., Davies, M. J., and Born, G. V., 1989, “Influence of Plaque Configuration and Stress Distribution on Fissuring of Coronary Atherosclerotic Plaques,” Lancet, 2(8669), pp. 941–944. [CrossRef] [PubMed]
Cheng, G. C., Loree, H. M., Kamm, R. D., Fishbein, M. C., and Lee, R. T., 1993, “Distribution of Circumferential Stress in Ruptured and Stable Atherosclerotic Lesions. A Structural Analysis With Histopathological Correlation,” Circulation, 87(4), pp. 1179–1187. [CrossRef] [PubMed]
Lee, R. T., Grodzinsky, A. J., Frank, E. H., Kamm, R. D., and Schoen, F. J., 1991, “Structure-Dependent Dynamic Mechanical Behavior of Fibrous Caps From Human Atherosclerotic Plaques,” Circulation, 83(5), pp. 1764–1770. [CrossRef] [PubMed]
Li, Z. Y., Howarth, S., Trivedi, R. A., U-King-Im, J. M., Graves, M. J., Brown, A., Wang, L. Q., and Gillard, J. H., 2006, “Stress Analysis of Carotid Plaque Rupture Based on In Vivo High Resolution MRI,” J. Biomech., 39, pp. 2611–2622. [CrossRef] [PubMed]
Loree, H. M., Kamm, R. D., Stringfellow, R. G., and Lee, R. T., 1992, “Effects of Fibrous Cap Thickness on Peak Circumferential Stress in Model Atherosclerotic Vessels,” Circ. Res., 71, pp. 850–858. [CrossRef] [PubMed]
Teng, Z., Sadat, U., Li, Z. Y., Huang, X., Zhu, C., Young, V. E., Graves, M. J., and Gillard, J. H., 2010, “Arterial Luminal Curvature and Fibrous-Cap Thickness Affect Critical Stress Conditions Within Atherosclerotic Plaque: An in vivo MRI-Based 2D Finite-Element Study,” Ann. Biomed. Eng., 38(10), pp. 3096–3101. [CrossRef] [PubMed]
Holzapfel, G. A., Stadler, M., and Schulze-Bause, C. A. J., 2002, “A Layer-Specific Three-Dimensional Model for the Simulation of Balloon Angioplasty Using Magnetic Resonance Imaging and Mechanical Testing,” Ann. Biomed. Eng., 30(6), pp. 753–767. [CrossRef] [PubMed]
Tang, D., Yang, C., Zheng, J., Woodard, P. K., Sicard, G. A., Saffitz, J. E., and Yuan, C, 2004, “3D MRI-Based Multicomponent FSI Models for Atherosclerotic Plaques,” Ann. Biomed. Eng., 32(7), pp. 947–960. [CrossRef] [PubMed]
Bluestein, D., Alemu, Y., Avrahami, I., Gharib, M., Dumont, K., Ricotta, J. J., and Einav, S., 2008, “Influence of Microcalcifications on Vulnerable Plaque Mechanics Using FSI Modeling,” J. Biomech., 41(5), pp. 1111–1118. [CrossRef] [PubMed]
Tang, D., Teng, Z., Canton, G., Hatsukami, T. S., Dong, L., Huang, X., and Yuan, C., 2009, “Local Critical Stress Correlates Better Than Global Maximum Stress With Plaque Morphological Features Linked to Atherosclerotic Plaque Vulnerability: An In Vivo Multi-Patient Study,” Biomed. Eng. Online, 8:15. [CrossRef]
Tang, D., Teng, Z., Canton, G., Yang, C., Ferguson, M., Huang, X., Zheng, J., Woodard, P. K., and Yuan, C., 2009, “Sites of Rupture in Human Atherosclerotic Carotid Plaques are Associated With High Structural Stresses: An In Vivo MRI-Based 3D Fluid-Structure Interaction Study,” Stroke, 40(10), pp. 3258–3263. [CrossRef] [PubMed]
Teng, Z., Canton, G., Yuan, C., Ferguson, M., Yang, C., Huang, X., Zheng, J., Woodard, P. K., and Tang, D., 2010, “3D Critical Plaque Wall Stress is a Better Predictor of Carotid Plaque Rupture Sites Than Flow Shear Stress: An In Vivo MRI-Based 3D FSI Study,” J. Biomech. Eng., 132(3), p. 031007. [CrossRef] [PubMed]
Leach, J. R., Rayz, V. L., Soares, B., Wintermark, M., Mofrad, M. R., and Saloner, D., 2010, “Carotid Atheroma Rupture Observed In Vivo and FSI Predicted Stress Distribution Based on Pre-Rupture Imaging,” Ann. Biomed. Eng., 38(8), pp. 2748–2765. [CrossRef] [PubMed]
Gao, H., Long, Q., Kumar Das, S., Halls, J., Graves, M., Gillard, J. H., and Li, Z. Y., 2011, “Study of Carotid Arterial Plaque Stress for Symptomatic and Asymptomatic Patients,” J. Biomech., 44(14), pp. 2551–2557. [CrossRef] [PubMed]
Takaya, N., Yuan, C., Chu, B., Saam, T., Polissar, N. L., Jarvik, G. P., Isaac, C., McDonough, J., Natiello, C., Small, R., Ferguson, M. S., Hatsukami, T. S., 2005, “Presence of Intraplaque Hemorrhage Stimulates Progression of Carotid Atherosclerotic Plaques: A High-Resolution Magnetic Resonance Imaging Study,” Circulation, 111(21), pp. 2768–2775. [CrossRef] [PubMed]
Takaya, N., Yuan, C., Chu, B. B., Saam, T., Underhill, H., Cai, J., Tran, N., Polissar, N. L., Isaac, C., Ferguson, M. S., Garden, G. A., Cramer, S. C., Maravilla, K. R., Hashimoto, B., and Hatsukami, T. S., 2006, “Association Between Carotid Plaque Characteristics and Subsequent Ischemic Cerebrovascular Events: A Prospective Assessment With MRI–Initial Results,” Stroke, 37(3), pp. 818–823. [CrossRef] [PubMed]
Chu, B., Kampschulte, A., Ferguson, M. S., Kerwin, W. S., Yarnykh, V. L., O'Brien, K. D., Polissar, N. L., Hatsukami, T. S., and Yuan, C., 2004, “Hemorrhage in the Atherosclerotic Carotid Plaque: A High-Resolution MRI Study,” Stroke, 35(5), pp. 1079–1084. [CrossRef] [PubMed]
Sadat, U., Teng, Z., Young, V. E., Zhu, C., Tang, T. Y., Graves, M. J., and Gillard, J. H., 2011, “Impact of Plaque Haemorrhage and its Age on Structural Stresses in Atherosclerotic Plaques of Patients With Carotid Artery Disease: An MR Imaging-Based Finite Element Simulation Study,” Int. J. Cardiovasc. Imaging, 27(3), pp. 397–402. [CrossRef] [PubMed]
Huang, X., Teng, Z., Canton, G., Ferguson, M., Yuan, C., and Tang, D., 2010, “Intraplaque Hemorrhage is Associated With Higher Structural Stresses in Human Atherosclerotic Plaques: An In Vivo MRI-Based 3D Fluid-Structure Interaction Study,” Biomed. Eng. Online, 9:86. [CrossRef]
Mitsumori, L. M., Hatsukami, T. S., Ferguson, M. S., Kerwin, W. S., Cai, J., and Yuan, C., 2003, “In Vivo Accuracy of Multisequence MR Imaging for Identifying Unstable Fibrous Caps in Advanced Human Carotid Plaques,” J. Magn. Reson. Imaging, 17(4), pp. 410–420. [CrossRef] [PubMed]
Yuan, C., Mitsumori, L. M., Ferguson, M. S., Polissar, N. L., Echelard, D., Ortiz, G., Small, R., Davies, J. W., Kerwin, W. S., and Hatsukami, T. S., 2001, “In Vivo Accuracy of Multispectral Magnetic Resonance Imaging for Identifying Lipid-Rich Necrotic Cores and Intraplaque Hemorrhage in Advanced Human Carotid Plaques,” Circulation, 104(17), pp. 2051–2056. [CrossRef] [PubMed]
Chu, B., Yuan, C., Takaya, N., Shewchuk, J. R., Clowes, A. W., and Hatsukami, T. S., 2006, “Images in Cardiovascular Medicine. Serial High-Spatial-Resolution, Multisequence Magnetic Resonance Imaging Studies Identify Fibrous Cap Rupture and Penetrating Ulcer Into Carotid Atherosclerotic Plaque,” Circulation, 113(12), pp. e660–e661. [CrossRef] [PubMed]
Hatsukami, T. S., Ross, R., Polissar, N. L., and Yuan, C., 2000, “Visualization of Fibrous Cap Thickness and Rupture in Human Atherosclerotic Carotid Plaque In Vivo With High-Resolution Magnetic Resonance Imaging,” Circulation, 102(9), pp. 959–964. [CrossRef] [PubMed]
Yuan, C., Mitsumori, L. M., Beach, K. W., and Maravilla, K. R., 2001, “Carotid Atherosclerotic Plaque: Noninvasive MR Characterization and Identification of Vulnerable Lesions,” Radiology, 221(2), pp. 285–299. [CrossRef] [PubMed]
Yang, C., Tang, D., Yuan, C., Hatsukami, T. S., Zheng, J., and Woodard, P. K., 2007, “In Vivo/Ex Vivo MRI-Based 3D Non-Newtonian FSI Models for Human Atherosclerotic Plaques Compared With Fluid/Wall-Only Models,” Comput. Model. Eng. Sci., 19(3), pp. 233–246. [PubMed]
Bathe, K. J., 2002, Theory and Modeling Guide, ADINA R&D, Inc., Watertown, MA.
Tang, D., Yang, C., Mondal, S., Liu, F., Canton, G., Hatsukami, T. S., and Yuan, C., 2008, “A Negative Correlation Between Human Carotid Atherosclerotic Plaque Progression and Plaque Wall Stress: In Vivo MRI-Based 2D/3D FSI Models,” J. Biomech., 41(4), pp. 727–736. [CrossRef] [PubMed]
Aglyamov, S. R., Skovoroda, A. R., Xie, H., Kim, K., Rubin, J. M., O'Donnell, M., Wakefield, T. W., Myers, D., and Emelianov, S. Y., 2007, “Model-Based Reconstructive Elasticity Imaging Using Ultrasound,” Int. J. Biomed. Imaging, 2007, Paper No. 35830. [CrossRef] [PubMed]
Huang, X., Yang, C., Yuan, C., Liu, F., Canton, G., Zheng, J., Woodard, P. K., Sicard, G. A., and Tang, D., 2002, “Patient-Specific Artery Shrinkage and 3D Zero-Stress State in Multi-Component 3D FSI Models for Carotid Atherosclerotic Plaques Based on In Vivo MRI Data,” Mol. Cell Biomech., 6(2), pp. 121–134.
Tang, D., Yang, C., Kobayashi, S., Zheng, J., and Vito, R. P., 2003, “Effect of Stenosis Asymmetry on Blood Flow and Artery Compression: A Three-Dimensional Fluid-Structure Interaction Model,” Ann. Biomed. Eng., 31(10), pp. 1182–1193. [CrossRef] [PubMed]
Michel, J. B., Virmani, R., Arbustini, E., and Pasterkamp, G., 2011, “Intraplaque Haemorrhages as the Trigger of Plaque Vulnerability,” Eur. Heart J., 32(16), pp. 1977–1985. [CrossRef] [PubMed]
Yuan, C., Mitsumori, L. M., Beach, K. W., and Maravilla, K. R., 2011, “Carotid Atherosclerotic Plaque: Noninvasive MR Characterization and Identification of Vulnerable Lesions,” Radiology, 221(2), pp. 285–299. [CrossRef]
Groen, H. C., Gijsen, F. J., van der Lugt, A., Ferguson, M. S., Hatsukami, T. S., van der Steen, A. F., Yuan, C., and Wentzel, J. J., 2007, “Plaque Rupture in the Carotid Artery is Localized at the High Shear Stress Region: A Case Report,” Stroke, 38, pp. 2379–2381. [CrossRef] [PubMed]
Ku, D. N., Giddens, D. P., Zarins, C. K., and Glagov, S., 1985, “Pulsatile Flow and Atherosclerosis in The Human Carotid Bifurcation: Positive Correlation Between Plaque Location and Low and Oscillating Shear Stress,” Arterioscl., Thromb., Vasc. Biol., 5, pp. 293–302. [CrossRef]

Figures

Grahic Jump Location
Fig. 1

TOF, PD, and T1-weighted MR images of a human carotid plaque sample with hemorrhage validated by histology

Grahic Jump Location
Fig. 2

PD-weighted MR images and segmented contour plots showing Hemorrhage. (a) in vivo MR-images, (b) segmented contour plots showing plaque components, and (c) 3D geometry showing hemorrhage and other components.

Grahic Jump Location
Fig. 3

Material curves and pressure conditions used in the multicomponent plaque model. (a) Material curves derived from the modified Mooney–Rivlin model; (b) Pressure conditions specified at the inlet (CCA) and outlet (ICA and ECA).

Grahic Jump Location
Fig. 4

Component-fitting mesh-generation process. (a) Segmented contour data showing the components, (b) created lines connecting data points and dividing the slice into component-fitting areas, (c) two types of volumes to curve-fit components and complex geometry, and (d) component-fitting volumes formed by connection corresponding areas from stacking adjacent slices.

Grahic Jump Location
Fig. 5

Illustration of the preshrink process to match in vivo MRI images: (a) segmented in vivo contour of Slice 7 (ICA), (b) the no-load contour after 8% shrinking in lumen and 4% expanding in outer-boundary (the expansion of outer-boundary was needed because the vessel was shortened), and (c) contour after stretch and pressurization

Grahic Jump Location
Fig. 6

Schematic drawing demonstrating the method for reducing the fibrous cap thickness. (a) Original image and (b) plaque with reduced fibrous cap thickness.

Grahic Jump Location
Fig. 7

Schematic drawing demonstrating the node-type assignment method for nodal point on lumen surfaces. Zone 1 and 3: Lipid nodes; Zone 2: Hemorrhage nodes; Zone 4: Normal Wall nodes.

Grahic Jump Location
Fig. 8

Band plots of plaque wall stress (maximum principle stress) and flow maximum shear stress. (a) Wall stress on stacked cross-section slices, (b) wall stress on bifurcation cut surface, and (c) flow shear stress on bifurcation cut surface.

Grahic Jump Location
Fig. 9

Comparison of PWS on slice 4 and slice 7 showing critical point from the models with lipid, fresh hemorrhage, the model where Lipid was replaced by fresh hemorrhage, and chronic hemorrhage

Tables

Errata

Discussions

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related Journal Articles
Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In