0
TECHNICAL PAPERS

Frictional Insertion Kinetics of Bone Biopsy Needles

[+] Author and Article Information
Anneliese D. Heiner, Joseph A. Buckwalter

Department of Orthopaedic Surgery, University of Iowa, Iowa City, IA 52242

Thomas D. Brown

Departments of Orthopaedic Surgery and Biomedical Engineering, University of Iowa, Iowa City, IA 52242

Victor Rossin

Allegiance Healthcare Corporation, McGaw Park, IL 60085

J Biomech Eng 123(6), 629-634 (Jul 10, 2001) (6 pages) doi:10.1115/1.1407829 History: Received January 11, 2001; Revised July 10, 2001
Copyright © 2001 by ASME
Topics: Force , Bone , needles
Your Session has timed out. Please sign back in to continue.

References

Jamshidi,  K., and Swaim,  W. R., 1971, “Bone Marrow Biopsy With Unaltered Architecture: A New Biopsy Device,” J. Lab. Clin. Med., 77, pp. 335–342.
Jamshidi,  K., Windschitl,  H. E., and Swaim,  W. R., 1971, “A New Biopsy Needle for Bone Marrow,” Scand. J. Haematol., 8, pp. 69–71.
Paulman,  P. M., 1989, “Bone Marrow Sampling,” Am. Fam. Physician, 40, No. 6, pp. 85–89.
Burgio,  V. L., 1991, “Improved Bone Marrow Biopsy Technique,” Eur. J. Haematol., 47, pp. 315–316.
Goldberg,  A. S., and Rishton,  M., 1999, “Bone Marrow Biopsy Needle Incorporating a Snare-Coil Specimen-Capturing Device: Description and Preclinical Studies,” Biomed. Instrum. Technol., 33, pp. 522–529.
Baxter Pharmaseal, 1988, Jamshidi Bone Marrow Biopsy/Aspiration Needle, User Instructions.
Guyton, A. C., 1986, Textbook of Medical Physiology, W. B. Saunders Company, Philadelphia, pp. 572–579 and 592–605.
Shaltot,  A., Michell,  P. A., Betts,  J. A., Darby,  A. J., Gishen,  P., 1982, “Jamshidi Needle Biopsy of Bone Lesions,” Clin. Radiol., 33, No. 2, pp. 193–196.
Birch,  C. D., Fischer,  S., Zibell,  A., Jensen,  M. E., 1982, “Diagnostic Bone-Marrow Studies Extended Routinely by Iliac Crest Biopsy, Using the Method of Schaadt–Fischer,” Acta Pathol. Microbiol. Immunol. Scand. Section A, Pathol., 90, No. 4, pp. 229–234.
ASTM F1839-97, 1997, Standard Specification for Rigid Polyurethane Foam for Use as a Standard Material for Testing Orthopaedic Devices and Instruments.
Chapman,  J. R., Harrington,  R. M., Lee,  K. M., Anderson,  P. A., Tencer,  A. F., and Kowalski,  D., 1996, “Factors Affecting the Pullout Strength of Cancellous Bone Screws,” ASME J. Biomech. Eng., 118, pp. 391–398.
Simonian,  P. T., Sussmann,  P. S., Baldini,  T. H., Crockett,  H. C., and Wickiewicz,  T. L., 1998, “Interference Screw Position and Hamstring Graft Location for Anterior Cruciate Ligament Reconstruction,” Arthroscopy, 14, No. 5, pp. 459–464.
Bechtold,  J. E., Meidt,  J. D., Varecka,  T. F., and Bianco,  P. T., 1993, “The Effect of Staple Size, Orientation, and Number on Torsional Fracture Fixation Stability,” Clin. Orthop., 297, pp. 210–217.
Firoozbakhsh,  K. K., Moneim,  M. S., and DeCoster,  T. A., 1991, “Pullout Strength of Power and Hand Driven Staples in Synthetic Bone: Effect of Design Parameters,” Trans. Combined Meet Orthop. Res. Soc., p. 203.
Hale,  J. E., Anderson,  D. D., and Johnson,  G. A., 1999, “A Polyurethane Foam Model for Characterizing Suture Pull-Through Properties in Bone,” Trans. Am. Soc. Biomech., 23, pp. 288–289.
Hale,  J. E., Anderson,  D. D., Johnson,  G. A., and Magovern,  J. A., 1996, “An Assessment of the Pull-Through Strength and Fatigue Properties of a New Sternal Closure Technique,” Trans. Am. Soc. Biomech., 23, pp. 86–87.
Lübbers,  H., Mahlke,  R., Haake,  C., and Lankisch,  P. G., 1993, “A New Fine Needle for Easier, Single Handed, Ultrasound-Guided Biopsies, Requiring Less Advancing Forces Into Solid Organs,” Z. Gastroenterol., 31, No. 9, pp. 484–485.
Coll,  B. F., and Jacquot,  P. J., 1988, “Surface Modification of Medical Implants and Surgical Devices Using TiN Layers,” Surf. Coat. Technol., 36, pp. 867–878.
The Electrolizing Corporation of Ohio, Cleveland, OH, 1999, Unpublished product literature.
Pellman, M. A., 1998, “PVD Coatings for Medical Device Applications,” presented at the Gorham Advanced Materials Conference.
Pellman,  M. A., and Hinora,  S. A., 1993, “Cutting Performance of TiN Coated Intramedullary Reamers,” Trans. Soc. Biomater., 16, p 59.
Harman,  M. K., Banks,  S. A., and Hodge,  W. A., 1997, “Wear Analysis of a Retrieved Hip Implant With Titanium Nitride Coating,” J. Arthroplasty, 12, No. 8, pp. 938–945.
McKenzie, S., 1996, “Medical Device Applications of Low Temperature Arc Vapor Deposition (LTAVD),” presented at Ethicon Endo-Surgery, Inc., 1st Materials Technology Suppliers’ Symposium.
Johnson,  W. D., and Skinner,  H. B., 1995, “Polyethylene Wear as a Function of Implant Materials,” Contemp. Orthop., 30, pp. 129–136.
Massoud,  S. N., Hunter,  J. B., Holdsworth,  B. J., Wallace,  W. A., and Juliusson,  R., 1997, “Early Femoral Loosening in One Design of Cemented Hip Replacement,” J. Bone Joint Surg. Br., 79, No. 4, pp. 603–608.
Pappas,  M. J., Makris,  G., and Buechel,  F. F., 1995, “Titanium Nitride Ceramic Film Against Polyethylene. A 48 Million Cycle Wear Test,” Clin. Orthop., 317, pp. 64–70.
Petersen,  C. D., Hillberry,  B. M., and Heck,  D. A., 1988, “Component Wear of Total Knee Prostheses Using Ti-6Al-4C, Titanium Nitride Coated Ti-6Al-4V, and Cobalt-Chromium-Molybdenum Femoral Components,” J. Biomed. Mater. Res., 22, No. 10, pp. 887–903.
Gil,  F. J., Solano,  E., Campos,  A., Boccio,  F., Saez,  I., Alfonso,  M. V., and Planell,  J. A., 1998, “Improvement of the Friction Behavior of NiTi Orthodontic Archwires by Nitrogen Diffusion,” Biomed. Mater. Eng., 8, Nos. 5–6, pp. 335–342.
Monties,  J. R., Dion,  I., Havlik,  P., Rouais,  F., Trinkl,  J., and Baquey,  C., 1997, “Cora Rotary Pump for Implantable Left Ventricular Assist Device: Biomedical Aspects,” Artif. Organs, 21, No. 7, pp. 730–734.
Steele,  J. G., McCabe,  J. F., and Barnes,  I. E., 1991, “Properties of a Titanium Nitride Coating for Dental Instruments,” J. Dent., 19, No. 4, pp. 226–229.
Moltrecht, K. H., 1981, Machine Shop Practice—Vol. 1, Industrial Press Inc., New York, pp. 102–105.
Bishop,  P. W., McNally,  K., and Harris,  M., 1992, “Audit of Bone Marrow Trephines,” J. Clin. Pathol., 45, No. 12, pp. 1105–1108.

Figures

Grahic Jump Location
Jamshidi-type bone biopsy needle (Allegiance Healthcare Corp., McGaw Park, IL). Inset shows close-up of needle tip.
Grahic Jump Location
Testing configuration for bone biopsy needles. The urethane bone analog is attached to a load/torque cell (not shown).
Grahic Jump Location
(a) Insertion energy and (b) peak resisting force comparisons of bone biopsy needle insertion into human PSIS and urethane bone analog. Use of the bone analog reduced the coefficient of variation (standard deviation/average) of insertion energy from 35 to 10 percent, and of peak resisting force from 34 to 10 percent.
Grahic Jump Location
(a) Force and (b) torque waveforms of bone biopsy needle insertion into human PSIS and urethane bone analog. Light lines are the human PSIS data captures with the lowest, median and highest insertion energies (IE’s), and the dark line is the urethane bone analog data capture with the median insertion energy (IE).
Grahic Jump Location
Typical data capture of bone biopsy needle insertion (baseline insertion protocol) into urethane bone analog. Arrow indicates cortico-cancellous transition.

Tables

Errata

Discussions

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related Journal Articles
Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In