Liquid Plug Flow in Straight and Bifurcating Tubes

[+] Author and Article Information
K. J. Cassidy

Department of Mechanical Engineering, Northwestern University, Evanston, IL 60208

N. Gavriely

Department of Physiology, Technion—Israel Institute of Technology, Haifa, Israel

J. B. Grotberg

Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI 48109

J Biomech Eng 123(6), 580-589 (Jun 07, 2001) (10 pages) doi:10.1115/1.1406949 History: Received September 22, 1999; Revised June 07, 2001
Copyright © 2001 by ASME
Your Session has timed out. Please sign back in to continue.


Long,  W., Thompson,  T., Sundell,  H., Schumacher,  R., Volberg,  F., and Guthrie,  R., 1991, “Effects of Two Rescue Doses of a Synthetic Surfactant on Mortality Rate and Survival Without Bronchopulmonary Dysplasia in 700- to 1350-Gram Infants With Respiratory Distress Syndrome.” The American Exosurf Neonatal Study Group I. J. Pediatr. (St. Louis), 118, pp. 595–605.
Yu,  J., and Chien,  Y. W., 1997, “Pulmonary Drug Delivery: Physiologic and Mechanistic Aspects,” Crit. Rev. Ther. Drug Carrier Syst., 14, pp. 395–453.
Raczka,  E., Kukowska-Latallo,  J. F., Rymaszewski,  M., Chen,  C., and Baker,  J. R., 1998, “The Effect of Synthetic Surfactant Exosurf on Gene Transfer in Mouse Lung in Vivo,” Gene Ther., 5, pp. 1333–1339.
Jobe,  A. H., Ueda,  T., Whitsett,  J. A., Trapnell,  B. C., and Ikegami,  M., 1996, “Surfactant Enhances Adenovirus-Mediated Gene Expression in Rabbit Lungs,” Gene Ther., 3, pp. 775–779.
Kharasch,  V. S., Sweeney,  T. D., Fredberg,  J., Lehr,  J., Damokosh,  A. I., Avery,  M. E., and Brain,  J. D., 1991, “Pulmonary Surfactant as a Vehicle for Intratracheal Delivery of Technetium Sulfur Colloid and Pentamidine in Hamster Lungs,” Am. Rev. Respir. Dis., 144, pp. 909–913.
Jensen,  O. E., Halpern,  D., and Grotberg,  J. B., 1994, “Transport of a Passive Solute by Surfactant-Driven Flows,” Chem. Eng. Sci., 49, pp. 1107–1117.
Hirschl,  R. B., Tooley,  R., Parent,  A. C., Johnson,  K., and Bartlett,  R. H., 1995, “Improvement of Gas Exchange, Pulmonary Function, and Lung Injury With Partial Liquid Ventilation, A Study Model in a Setting of Severe Respiratory Failure,” Chest, 108, pp. 500–508.
Shaffer,  T. H., and Wolfson,  M. R., 1996, “Liquid Ventilation: An Alternative Ventilation Strategy for Management of Neonatal Respiratory Distress,” Eur. J. Pediatr., 155, Suppl.2. pp. S30–S34.
Baden,  H. P., Mellema,  J. D., Bratton,  S. L., O’Rourke,  P. P., and Jackson,  J. C., 1997, “High-Frequency Oscillatory Ventilation With Partial Liquid Ventilation in a Model of Acute Respiratory Failure,” Crit. Care Med., 25, pp. 299–302.
Leach,  C. L., Greenspan,  J. S., Rubenstein,  S. D., Shaffer,  T. H., Wolfson,  M. R., Jackson,  J. C., DeLemos,  R., and Fuhrman,  B. P., 1996, “Partial Liquid Ventilation With Perflubron in Premature Infants With Severe Respiratory Distress Syndrome,” The LiquiVent Study Group [see comments]. N. Engl. J. Med., 335, pp. 761–767.
Halpern,  D., Jensen,  O. E., and Grotberg,  J. B., 1998, “A Theoretical Study of Surfactant and Liquid Delivery Into the Lung,” J. Appl. Physiol., 85, pp. 333–352.
Cassidy,  K. J., Bull,  J. L., Glucksberg,  M. R., Dawson,  C. A., Haworth,  S. T., Hirschl,  R. B., Gavriely,  N., and Grotberg,  J. B., 2001, “A Rat Lung Model of Instilled Liquid Transport in the Pulmonary Airways,” J. Appl. Physiol., 90, pp. 1955–1967.
Halpern,  D., and Gaver,  D. P., 1994, “Boundary-Element Analysis of the Time-Dependent Motion of a Semi-Infinite Bubble in a Channel,” J. Comp. Phys., 115, pp. 366–375.
Espinosa,  F. F., and Kamm,  R. D., 1999, “Bolus Dispersal Through the Lungs in Surfactant Replacement Therapy,” J. Appl. Physiol., 86, pp. 391–410.
Fairbrother, F., and Stubbs, A. E., 1935, “Studies in Electro-Endosmosis. Part IV. The ”Bubble-Tube Method of Measurement.” J. Chem. Soc., pp. 527–529.
Bretherton,  F. P., 1961, “The Motion of Long Bubbles in Tubes,” J. Fluid Mech., 10, pp. 166–188.
Goldsmith,  H. L., and Mason,  S. G., 1963, “The Flow of Suspensions Through Tubes II. Single Large Bubbles,” J. Colloid Sci., 18, pp. 237–261.
Taylor,  G. I., 1961, “Deposition of a Viscous Fluid on the Wall of a Tube,” J. Fluid Mech., 10, pp. 161–165.
Cassidy,  K. J., Halpern,  D., Ressler,  B. G., and Grotberg,  J. B., 1999, “Surfactant Effects in Model Airway Closure Experiments,” J. Appl. Physiol., 87, pp. 415–427.
Cachile,  M., Chertcoff,  R., Calvo,  A., Rosen,  M., Hulin,  J. P., and Cazabat,  A. M., 1996, “Residual Film Dynamics in Glass Capillaries,” J. Colloid Interface Sci., 182, pp. 483–491.
Martinez,  M. J., and Udell,  K. S., 1989, “Boundary Integral Analysis of the Creeping Flow of Long Bubbles in Capillaries,” J. Appl. Mech., 56, pp. 211–217.
Schwartz,  L. W., Princen,  H. M., and Kiss,  A. D., 1986, “On the Motion of Bubbles in Capillary Tubes,” J. Fluid Mech., 172, pp. 259–275.
Howell,  P. D., Waters,  S. L., and Grotberg,  J. B., 2000, “The Propogation of a Liquid Bolus Along a Liquid-Lined Flexible Tube,” J. Fluid Mech., 406, pp. 309–335.
Codd,  S. L., Lambert,  R. K., Alley,  M. R., and Pack,  R. J., 1994, “Tensile Stiffness of Ovine Tracheal Wall,” J. Appl. Physiol., 76, pp. 2627–2635.
Yager,  D., Cloutier,  T., Feldman,  H., Bastacky,  J., Drazen,  J. M., and Kamm,  R. D., 1994, “Airway Surface Liquid Thickness as a Function of Lung Volume in Small Airways of the Guinea Pig,” J. Appl. Physiol., 77, pp. 2333–2340.
Sackner,  M. A., and Kim,  C. S., 1987, “Phasic Flow Mechanisms of Mucus Clearance,” Eur. J. Respir. Dis. Suppl., 153, pp. 159–164.
Speer,  C. P., Gefeller,  O., Groneck,  P., Laufkotter,  E., Roll,  C, Hanssler,  L., Harms,  K., Herting,  E., Boenisch,  H., and Windeler,  J., , 1995, “Randomised Clinical Trial of Two Treatment Regimens of Natural Surfactant Preparations in Neonatal Respiratory Distress Syndrome,” Arch. Dis. Child Fetal Neonatal Ed., 72, pp. F8–13.
Corbet,  A., Bucciarelli,  R., Goldman,  S., Mammel,  M., Wold,  D., and Long,  W., 1991, “Decreased Mortality Rate Among Small Premature Infants Treated at Birth With a Single Dose of Synthetic Surfactant: A Multicenter Controlled Trial,” J. Pediatr., 118, pp. 277–284.
Weibel, E. R., 1963, Morphometry of the Human Lung, New York, Academic Press. 151 pp.
Greenspan,  J. S., Fox,  W. W., Rubenstein,  S. D., Wolfson,  M. R., Spinner,  S. S., and Shaffer,  T. H., 1999, “Partial Liquid Ventilation in Critically Ill Infants Receiving Extracorporeal Life Support,” Pediatrics, 99, E2.
Hirschl,  R. B., Conrad,  S., Kaiser,  R., Zwischenberger,  J. B., Bartlett,  R. H., Booth,  F., and Cardenas,  V., 1998, “Partial Liquid Ventilation in Adult Patients With ARDS: A Multicenter Phase I-II Trial. Adult PLV Study Group,” Ann. Surg., 228, pp. 692–700.
Cassidy, K. J., 1999, “Liquid Film Dynamics in the Pulmonary Airways,” Northwestern University, Evanston, IL. 171 pp.
Walmrath,  D., Gunther,  A., Ghofrani,  H. A., Schermuly,  R., Schneider,  T., Grimminger,  F., and Seeger,  W., 1996, “Bronchoscopic Surfactant Administration in Patients With Severe Adult Respiratory Distress Syndrome and Sepsis,” Am. J. Respir. Crit. Care Med., 154, pp. 57–62.
Everett,  D. H., and Haynes,  J. M., 1972, “Model Studies of Capillary Con-densation 1. Cylindrical Pore Model With Zero Contact Angle,” J. Colloid Interface Sci., 38, pp. 125–137.
Kamm,  R. D., and Schroter,  R. C., 1989, “Is Airway Closure Caused by a Thin Liquid Instability?” Respir. Physiol., 75, pp. 141–156.
Gauglitz,  P. A., and Radke,  C. J., 1988, “An Extended Evolution Equation for Liquid Film Breakup in Cylindrical Capillaries,” Chem. Eng. Sci., 43, pp. 1457–1465.
Hammond,  P. S., 1983, “Nonlinear Adjustment of a Thin Annular Film of Viscous Fluid Surrounding a Thread of Another Within a Circular Pipe,” J. Fluid Mech., 137, pp. 363–384.


Grahic Jump Location
Schematic of flow types. A: semi-infinite bubble, B: dry-tube liquid plug, and C: wet tube liquid plug
Grahic Jump Location
Schematic of the experimental setup
Grahic Jump Location
Experimental results for Case (i). Film thickness, h/a, versus capillary number, Ca. ○ system 1, ▿ system 2, and □ system 3. The initial plug lengths 20<l/a<60. Semi-infinite bubble experiments from 19 for comparison: • LB400X and water, ▾ LB 1715 oil and water. Theoretical curve for semi-infinite bubbles – 11.
Grahic Jump Location
Experimental results for Case (ii).A: Dimensionless plug length, Λ=l/l0, versus dimensionless time, τ=(t−t0)/(l0/U1), for system 5 where h1/a=0.150±0.015,l0=2.5 cm: ▾ set h2/a=0.125±0.002 with linear fit [[dashed_line]] dΛ/dτ=4.6×10−2; ○ set h2/a=0.158±0.006 with linear fit [[dotted_line]] dΛ/dτ=2.27×10−4; • set h2/a=0.189±0.002 with linear fit – dΛ/dτ=−0.106.B: Trailing film thickness, h2/a, versus plug capillary number, Ca2: • system 5 (Ca1=0.0954,h1/a=0.150±0.015), ○ system 6 (Ca1=0.0345,h1/a=0.083±0.004); – linear regression lines for system 5 and system 6 data.
Grahic Jump Location
Experimental results for Case (iii). Local film thickness, h/a, versus local Ca, for system 7 (Ca<1) and system 8 (Ca>1). Each symbol set represents a family (symbol shape) at one CaP. ▪ Parent, □ daughter A or daughter B; – Theory of Halpern et al. 11.
Grahic Jump Location
Images of liquid plug passing through bifurcation region for Case (iv).A: test plug in parent, blockage in daughter A (lower). B: test plug has split into plugs in each daughter, trailing menisci just past the carina, and blockage starts to move. C: plug in daughter B travels faster than plug in daughter A.
Grahic Jump Location
Experimental results for Case (iv) where VBLK/aA3=10.4±2.5.A: Splitting ratio, lB/lA, versus CaP and B: Capillary ratio, CaB/CaA, versus CaP; ○ system 9, VP/aP3=35.0±6.0; □ system 9, VP/aP3=50.3±5.4; • system 10, VP/aP3≈90.C: Local film thickness, h/a, versus local Ca in each region; color set represents a system 9 family (color shade) at one flow setting. Flow in the • parent, ▪ daughter A, ▾ daughter B, and ♦ liquid blockage.
Grahic Jump Location
Experimental results for Case (iv) system 11 at CaP=1.0×10−2.A: Splitting ratio, lB/lA, versus ratio of liquid volume in the blockage to parent, VBLK/VP, and B: Capillary ratio, CaB/CaA, versus VBLK/VP; ▪ VP/aP3=21.6±3.4, • VP/aP3=36.4±3.7, ▴ VP/aP3=51.6±2.9.
Grahic Jump Location
Schematic of Case (iv) before (A) and after (B) the parent plug moves into the daughters, dividing along the central axis. P=Parent plug, BLK=Blockage plug, A=Daughter A plug, B=Daughter B plug.
Grahic Jump Location
Experimental results of liquid distribution for Case (iv) where VBLK/aA3=10.4±2.5. Mass Ratio (A) and Homogeneity index (B), before (closed symbol) and after (open symbol) the parent plug passes through the bifurcation central zone; • system 9, VP/aP3=35.0±6.0; ▴ system 9, VP/aP3=50.3±5.4; ▪ system 10, VP/aP3≈90.




Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related Journal Articles
Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In