0
TECHNICAL PAPERS

Mechanical Properties and Microstructure of Intraluminal Thrombus From Abdominal Aortic Aneurysm

[+] Author and Article Information
David H. J. Wang

Departments of Surgery and Bioengineering, University of Pittsburgh, Pittsburgh, PA 15213

Michel Makaroun, Marshall W. Webster

Department of Surgery, University of Pittsburgh, Pittsburgh, PA 15213

David A. Vorp

Departments of Surgery, Mechanical Engineering, and Bioengineering, University of Pittsburgh, Pittsburgh, PA 15213

J Biomech Eng 123(6), 536-539 (Jun 21, 2001) (4 pages) doi:10.1115/1.1411971 History: Received December 05, 2000; Revised June 21, 2001
Copyright © 2001 by ASME
Your Session has timed out. Please sign back in to continue.

References

Di Martino,  E., Mantero,  S., Inzoli,  F., Melissano,  G., Astore,  D., Chiesa,  R., and Fumero,  R., 1998, “Biomechanics of Abdominal Aortic Aneurysm in the Presence of Endoluminal Thrombus: Experimental Characterization and Structural Static Computational Analysis,” Eur. J. Vasc. Endovasc Surg., 15, pp. 290–299.
Elger,  D. F., Blackketter,  D. M., Budwig,  R. S., and Johansen,  K. H., 1996, “The Influence of Shape on the Stress in Model Abdominal Aneurysms,” ASME J. Biomech. Eng., 118, pp. 326–332.
Inzoli,  F., Boschetti,  F., Zappa,  M., Longo,  T., and Fumero,  R., 1993, “Biomechanical Factors in Abdominal Aortic Aneurysm Rupture,” Eur. J. Vasc. Surg., 7, pp. 667–674.
Mower,  W. R., Baraff,  L. J., and Sneyd,  J., 1993, “Stress Distributions in Vascular Aneurysms: Factor Affecting Risk of Aneurysm Rupture,” J. Surg. Res. 55, pp. 155–161.
Mower,  W. R., Quinones,  W. J., and Gambhir,  S. S., 1997, “Effect of Intraluminal Thrombus on Abdominal Aortic Aneurysm Wall Stress,” J. Vasc. Surg., 26, pp. 602–608.
Raghavan,  M. L., Vorp,  D. A., Federle,  M. P., Makaroun,  M. S., and Webster,  M. W., 2000, “Wall Stress Distribution on Three-Dimensionally Reconstructed Models of Human Abdominal Aortic Aneurysm,” J. Vasc. Surg., 31, No. 4, pp. 760–769.
Stringfellow,  M. M., Lawrence,  P. F., and Stringfellow,  R. G., 1987, “The Influence of Aorta-Aneurysm Geometry Upon Stress in the Aneurysm Wall,” J. Surg. Res., 42, pp. 425–433.
Vorp,  D. A., Wang,  D. H. J., Raghavan,  M. L., and Webster,  M. W., 1998, “Effect of Shape of Intraluminal Thrombus on Wall Stress In Abdominal Aortic Aneurysm,” Ann. Biomed. Eng., 26, Suppl. 1, p. 68.
Vorp,  D. A., Raghavan,  M. L., and Marshall,  W. W., 1998, “Mechanical Wall Stress in Abdominal Aneurysm: Influence of Diameter and Asymmetry,” J. Vasc. Surg., 27, pp. 632–639.
Harter,  L. P., Gross,  B. H., Callen,  R. A., and Barth,  R. A., 1982, “Ultrasonic Evaluation of Abdominal Aortic Thrombus,” J. Ultrasound Med., 1, pp. 315–318.
Vorp,  D. A., Raghavan,  M. L., Muluk,  S. C., Makaroun,  M. S., Steed,  D. L., and Shapiro,  R., 1996, “Wall Strength and Stiffness of Aneurysmal and Nonaneurysmal Abdominal Aorta,” Ann. N.Y. Acad. Sci., 800, pp. 274–276.
Raghavan,  M. L., and Vorp,  D. A., 2000, “Toward a Biomechanical Tool to Evaluate Rupture Potential of Abdominal Aortic Aneurysm: Identification of a Finite Strain Constitutive Model And Evaluation of Its Applicability,” J. Biomech., 33, pp. 475–482.
Vorp,  D. A., Mandarino,  W. A., Webster,  M. W., and Gorcsan,  J., 3rd, 1996, “Potential Influence of Intraluminal Thrombus on Abdominal Aortic Aneurysm as Assessed by a New Non-Invasive Method,” Cardiovasc. Surg., 4, No. 6, pp. 732–739.
Roach,  M. R., and Burton,  A. C., 1975, “The Reason for the Shape of the Distensibility Curves of Arteries,” Can. J. Biochem. Physiol., 35, pp. 681–690.
Raghavan,  M. L., Webster,  M. W., and Vorp,  D. A., 1996, “Ex-Vivo Biomechanical Behavior of Abdominal Aortic Aneurysm: Assessment Using a New Mathematical Model,” Ann. Biomed. Eng., 24, pp. 573–582.
da Silva,  E. S., Rodrigues,  A. J., de Tolosa,  E. M. C., Rodrigues,  C. J., Villas Boas do Prado,  G., and Nakamoto,  J. C., 2000, “Morphology and Diameter of Infrarenal Aortic Aneurysms: A Prospective Autopsy Study,” Cardiovasc. Surg., 8, No. 7, pp. 526–532.
Rivlin,  R. S., and Saunders,  D. W., 1951, “Large Elastic Deformation of Isotropic Materials, VII. Experiments on the Deformation of Rubber,” Philos. Trans. R. Soc. London, Ser. A, A243, pp. 251–288.
Humphrey,  J. D., and Yin,  F. C., 1987, “On Constitutive Relations and Finite Deformation of Passive Cardiac Tissue. I: A Pseudostrain-Energy Function,” ASME J. Biomech. Eng., 109, pp. 298–304.
Adolph,  R., Vorp,  D. A., Steed,  D. L., Webster,  M. W., Kameneva,  M. V., and Watkins,  S. C., 1997, “Cellular Content and Permeability of Intraluminal Thrombus in Abdominal Aortic Aneurysm,” J. Vasc. Surg., 25, pp. 916–926.
Sacks,  M. S., Vorp,  D. A., Raghavan,  M. L., Federle,  M. P., and Webster,  M. W., 1999, “In-Vivo 3D Surface Geometry of Abdominal Aortic Aneurysm,” Ann. Biomed. Eng., 27, pp. 469–479.

Figures

Grahic Jump Location
Regression of dW/dIIB against IIB-3 using the uniaxial testing data
Grahic Jump Location
Cross-sectional cut of intraluminal thrombus (above) and representative scanning electron micrograph from the three different regions (bottom). The red color region is the luminal layer, the white color region is the medial layer, and the dark brown region is the abluminal layer. The luminal surface which is the newly formed ILT (A), the medial region (B), and the abluminal region near the AAA wall where the ILT is the most “aged” (C).
Grahic Jump Location
Typical set of T–λ curves for ILT samples taken from the luminal region (upper set of curves) and the medial region (lower set of curves). All data were obtained from the same ILT (same patient).
Grahic Jump Location
Group data (mean±SEM) from surface layer and fit to the constitutive model given by Eq. (5).

Tables

Errata

Discussions

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related Journal Articles
Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In