Ernst,
C., 1993, “Abdominal Aortic Aneurysm,” N. Engl. J. Med., 328, No. 16, pp. 1167–1172.

Wille,
S., 1981, “Pulsatile Pressure and Flow in an Arterial Aneurysm Simulated in a Mathematical Model,” J. Biomed. Eng., 3, pp. 153–158.

Perktold,
K., Gruber,
K., Kenner,
T., and Florian,
H., 1984, “Calculation of Pulsatile Flow and Particle Paths in an Aneurysm-Model,” Basic Res. Cardiol., 79, pp. 253–261.

Perktold,
K., 1987, “On the Paths of Fluid Particles in an Axisymmetrical Aneurysm,” J. Biomech., 20, No. 3, pp. 311–417.

Fukushima,
T., Matsusawa,
T., and Homma,
T., 1989, “Visualization and Finite Element Analysis of Pulsatile Flow in Models of the Abdominal Aortic Aneurysm,” Biorheology, 26, pp. 109–130.

Taylor,
T., and Yamaguchi,
T., 1994, “Three-Dimensional Simulation of Blood Flow in an Abdominal Aortic Aneurysm—Steady and Unsteady Flow Cases,” ASME J. Biomech. Eng., 116, pp. 89–97.

Elger, D., Slippy, J., Budwig, R., Khraishi, T., and Johansen K., 1995, “A Numerical Study of the Hemodynamics in a Model Abdominal Aortic Aneurysm (AAA),” *Proc. ASME Symposium on Biomedical Fluids Engineering*, R. A. Gerbsch and K. Ohba, eds., ASME FED-Vol. 212, pp. 15–22.

Khraishi, T., Elger, D., Budwig, R., and Johansen K., 1996, “The Effects of Modeling Parameters on the Hemodynamics of an Abdominal Aortic Aneurysm (AAA),” *Proc. 1996 ASME Fluids Engineering Division Summer Meeting*, ASME FED-Vol. 237, pp. 349–356.

Schoephoerster,
R., Oynes,
F., Nunez,
G., Kapadvanjwala,
M., and Dewanjee,
M., 1993, “Effects of Local Geometry and Fluid Dynamics on Regional Platelet Deposition on Artificial Surfaces,” Arterioscler. Thromb., 13, No. 12, pp. 1806–1813.

Bluestein,
D., Niu,
L., Schoephoerster,
R., and Dewanjee,
M., 1996, “Steady Flow in an Aneurysm Model: Correlation Between Fluid Dynamics and Blood Platelet Deposition,” ASME J. Biomech. Eng., 118, pp. 280–286.

Guzmán,
A., and Amon,
C., 1996, “Dynamical Flow Characterization of Transitional and Chaotic Regimes in Converging–Diverging Channels,” J. Fluid Mech., 321, pp. 25–57.

Amon,
C., Guzmán,
A., and Morel,
B., 1996, “Lagrangian Chaos, Eulerian Chaos, and Mixing Enhancement in Converging–Diverging Channel Flows,” Phys. Fluids, 8, No. 5, pp. 1192–1206.

Rodkiewicz, C., Viswanath, N., and Zajac, S., 1995, “On the Abdominal Aortic Aneurysm: Numerical and In Vitro Experimental Study,” *Proc. 1st 1995 Regional Conference IEEE Engineering in Medicine and Biology Society and 14th Conference of the Biomedical Engineering Society of India*, pp. 2.86–2.87.

Viswanath,
N., Zajac,
S., and Rodkiewicz,
C., 1997, “On the Abdominal Aortic Aneurysms: Pulsatile State Considerations,” Med. Eng. Phys., 19, No. 4, pp. 343–351.

Guzmán, A., Moraga, N., and Amon, C., 1997, “Pulsatile Non-Newtonian Flow in a Double Aneurysm,” *1997 Advances in Bioengineering*, ASME BED-Vol. 36, pp. 87–88.

Moraga, N., Guzmán A., and Rosas, C., 1997, “Mecánica de Fluidos No Newtonianos de Flujo Transiente en Tuberı́a con Sección Transversal Variable en el Espacio,” *VI Congreso La Ingenierı́a en la Industria del Cobre*, Universidad de Antofagasta, Chile, pp. 167–175.

Guzmán,
A., Moraga,
N., Muñoz,
G., and Amon,
C., 1997, “Pulsatile Non-Newtonian Flow in a Converging–Diverging Tube,” AIChE Symp. Series, 93, No. 314, pp. 288–294.

Egelhoff, C., Budwig, R., Elger, D., and Khraishi, T., 1997, “A Model Study of Pulsatile Flow Regimes in Abdominal Aortic Aneurysms,” *Proc. 1997 ASME Fluids Engineering Division Summer Meeting*, FED-Vol. 21, pp. 1–8.

Egelhoff,
C., Budwig,
R., Elger,
D., Khraishi,
T., and Johansen,
K., 1999, “Model Studies of the Flow in Abdominal Aortic Aneurysms During Resting and Exercise Conditions,” J. Biomech., 32, pp. 1319–1329.

Peattie, R., and Bluth, E., 1998, “Experimental Study of Pulsatile Flows in Models of Abdominal Aortic Aneurysms,” *Proc. 20th Annual International Conference of the IEEE Engineering in Medicine and Biology Society*, 20 , No. 1, pp. 367–370.

Peattie, R., Cooper, J., and Day, A., 1999, “Computational Investigation of Pulsatile Flows and Wall Stresses in Models of Abdominal Aortic Aneurysms,” *Proc. 1st Joint BMES/EMBS Conference*, p. 305.

Yu,
S., 2000, “Steady and Pulsatile Flow Studies in Abdominal Aortic Aneurysm Models Using Particle Image Velocimetry,” Int. J. Heat Fluid Flow, 21, pp. 74–83.

Satcher,
R., Bussolari,
S., Gimbrone,
M., and Dewey,
C., 1992, “The Distribution of Forces on Model Arterial Endothelium Using Computational Fluid Dynamics,” ASME J. Biomech. Eng., 114, pp. 309–316.

Satcher,
R., and Dewey,
C., 1996, “Theoretical Estimates of Mechanical Properties of the Endothelial Cell Cytoskeleton,” Biophys. J., 71, pp. 109–118.

DePaola,
N., Gimbrone,
M., Davies,
P., and Dewey,
C., 1992, “Vascular Endothelium Responds to Fluid Shear Stress Gradients,” Arterioscler. Thromb., 12, No. 11, pp. 1254–1257.

Davies,
P., Mundel,
T., and Barbee,
K., 1995, “A Mechanism for Heterogeneous Endothelial Responses to Flow In Vivo and In Vitro,” J. Biomech., 28, No. 12, pp. 1553–1560.

Lei, M., and Kleinstreuer, C., 1996, “The Zero-Tension Hypothesis for the Mechanism of Atherogenesis and the Wall Shear Stress Gradient (WSSG) Predictor Equation,” *1996 Advances in Bioengineering*, ASME BED-Vol. 33, pp. 211–212.

Tardy,
Y., Resnick,
N., Nagel,
T., Gimbrone,
M., Dewey,
C., 1997, “Shear Stress Gradients Remodel Endothelial Monolayers in Vitro via a Cell Proliferation-Migration-Loss Cycle,” Arterioscler., Thromb., Vasc. Biol., 17, pp. 3102–3106.

Graboswki,
E., 1995, “Thrombolysis, Flow, and Vessel Wall Interactions,” J. Vascular Interventional Radi. 6, No. 6, Pt 2 pp. 25S–29S.

Finol, E., and Amon, C., 2000, “Pulsatile Flow Hemodynamics in Abdominal Aortic Aneurysms,” *Proc. V International Congress of Numerical Methods in Engineering and Applied Sciences—CIMENICS 2000*, Troyani, N., and Cerrolaza, M., eds., Sociedad Venezolana de Métodos Numéricos en Ingenierı́a, Caracas, Venezuela, pp. CI81–CI90.

Finol, E., and Amon, C., 2000, “Momentum Transfer in Abdominal Aortic Aneurysms: The Effect of Aneurysm Size in Steady Flow Hemodynamics,” *Proc. 34th ASME National Heat Transfer Conference—NHTC 2000*, No. NHTC2000-12205.

McDonald, D., 1960, *Blood Flow in Arteries*, Wilkins & Wilkins, Baltimore, MD.

Albritton, E., 1951, *Standard Values in Blood*, United States Air Force, Wright Air Development Center, pp. 5–7.

Mills,
C., Gabe,
I., Gault,
J., Mason,
D., Ross,
J. , Braunwald,
E., and Shillingford,
J., 1970, “Pressure-Flow Relationships and Vascular Impedance in Man,” Cardiovasc. Res., 4, pp. 405–417.

Pedersen,
E., Yoganathan,
A., and Lefebvre,
X., 1992, “Pulsatile Flow Visualization in a Model of the Human Abdominal Aorta and Aortic Bifurcation,” J. Biomech., 25, No. 8, pp. 935–944.

Pedersen,
E., Sung,
H., Burlson,
A., and Yoganathan,
A., 1993, “Two-Dimensional Velocity Measurements in a Pulsatile Flow Model of the Normal Abdominal Aorta Simulating Different Hemodynamic Conditions,” J. Biomech., 26, No. 10, pp. 1237–1247.

Milnor, W., 1989, *Hemodynamics*, Wilkins & Wilkins, Baltimore, MD, 2nd ed.

Maier,
S., Meier,
D., Boesiger,
P., Moser,
U., and Vieli,
A., 1989, “Human Abdominal Aorta: Comparative Measurements of Blood Flow With MR Imaging and Multigated Doppler US,” Radiology, 171, pp. 487–492.

Lei,
M., Kleinstreuer,
C., and Truskey,
G., 1995, “Numerical Investigation and Prediction of Atherogenic Sites in Branching Arteries,” ASME J. Biomech. Eng., 117, pp. 350–357.

Patera,
A., 1984, “A Spectral Element Method for Fluid Dynamics: Laminar Flow in a Channel Expansion,” J. Comput. Phys., 54, pp. 468–488.

Amon,
C., 1993, “Spectral Element-Fourier Method for Transitional Flows in Complex Geometries,” AIAA J., 31, No. 1, pp. 42–48.

Amon,
C., 1995, “Spectral Element-Fourier Method for Unsteady Forced Convective Heat Transfer in Complex Geometry Flows,” J. Thermophys. Heat Transfer, 9, No. 2, pp. 247–253.

Davies,
P., 1997, “Mechanisms Involved in Endothelial Responses to Hemodynamic Forces,” Atherosclerosis, 131, Suppl pp. S15–S17.

Davies,
P., Dewey,
C., Bussolari,
S., Gordon,
E., and Gimbrone,
M., 1984, “Influence of Hemodynamic Forces on Vascular Endothelial Function,” J. Clin. Invest., 73, pp. 1121–1129.

Davies,
P., Remuzzi,
A., Gordon,
E., Dewey,
C., and Gimbrone,
M., 1986, “Turbulent Fluid Shear Stress Induces Vascular Endothelial Cell Turnover In Vitro,” Proc. Natl. Acad. Sci. U.S.A., 83, pp. 2114–2117.

Dewey,
C., Bussolari,
S., Gimbrone,
M., and Davies,
P., 1981, “The Dynamic Response of Vascular Endothelial Cells to Fluid Shear Stress,” ASME J. Biomech. Eng., 103, pp. 177–185.

Shen,
J., Luscinkas,
F., Connolly,
A., Dewey,
C., and Gimbrone,
M., 1992, “Fluid Shear Stress Modulates Cytosolic Free Calcium in Vascular Endothelial Cells,” Am. J. Physiol., 262, No. 2, Pt. 1, pp. C384–C390.

Muraki,
N., 1983, “Ultrasonic Studies of the Abdominal Aorta With Special Reference to Hemodynamic Considerations on Thrombus Formation in the Abdominal Aortic Aneurysm,” J. Jap. College Angiol., 23, pp. 401–413.