An Analytically Solvable Model for Biomechanical Response of the Cornea to Refractive Surgery

[+] Author and Article Information
Gagik P. Djotyan

University of Michigan, College of Engineering, Department of Biomedical Engineering, 3304 GG Brown, 2350 Hayward St., Ann Arbor, MI 48109e-mail: jotyan@engin.umich.edu

Ron M. Kurtz

Department of Ophthalmology, University of California, Irvine, Irvine, CAKellogg Eye Center, Department of Ophthalmology, University of Michigan, 1000 Wall Street, Ann Arbor, MI 48105e-mail: rkurtz@uci.edu

Delia Cabrera Fernández

Department of Applied Physics, University of Michigan, 2477 Randall Lab., Ann Arbor, MI 48109-1120e-mail: fcabrera@umich.edu

Tibor Juhasz

University of Michigan, College of Engineering, Department of Biomedical Engineering, 3304 GG Brown, 2350 Hayward St., Ann Arbor, MI 48109Department of Ophthalmology, University of Michigan, 1000 Wall Street, Ann Arbor, MI 48105e-mail: juhasz@umich.edu

J Biomech Eng 123(5), 440-445 (Apr 25, 2001) (6 pages) doi:10.1115/1.1388293 History: Received January 23, 2000; Revised April 25, 2001
Copyright © 2001 by ASME
Your Session has timed out. Please sign back in to continue.


Trokel,  S. J., Srinivasan,  R., and Braren,  B., 1983, “Excimer Laser Surgery of the Cornea,” Am. J. Ophthalmol., 94, p. 125.
Marshall,  J., Trokel,  S., Rothery,  S., and Krueger,  R. R., 1986, “Photoablative Reprofiling of the Cornea Using an Excimer Laser: Photorefractive Keratectomy,” Lasers Ophthalmol., 1, pp. 21–48.
Pallikaris,  I. G., and Saiganos,  D. S., 1994, “Excimer Laser In-Situ Keratomileusis and Photorefractive Keratectomy for Correction of High Myopia,” J. Refract. Corneal Surg., 10, pp. 498–510.
Seiler,  T., 1993, “HO:YAG Laser Thermokeratoplasty for Hyperopia,” Ophthalmol. Clin. North Am., 5, pp. 773–780.
Moreira,  H., Campos,  M., Sawusch,  M. R., , 1993, “Holmium Laser Thermokeratoplasty,” Ophthalmology, 100, pp. 752–761.
Schanzlin,  D. J., Asbell,  P. A., Burris,  T. E., and Durrie,  D. S., 1997, “The Instrastromal Corneal Ring Segments: Phase II Results for the Correction of Myopia,” Ophthalmology, 104, pp. 1067–1078.
Holmes-Higgin,  D. K., Baker,  P. C., , 1999, “Characterization of the Aspheric Corneal Surface With Intrastromal Corneal Ring Segments,” J. Refract. Surg., 15, pp. 520–528.
Juhasz,  T., Loesel,  F. H., Kurtz,  R. M., Horvath,  C., Bille,  J. F., and Mourou,  G., 1999, “Corneal Refractive Surgery With Femtosecond Lasers,” IEEE J. Sel. Top. Quantum Electron., 5, pp. 902–910.
Williams, S., and Grant, W., 1985, “Bending Resistance in Modeling the Cornea as a Thin Shell and the Effects in Radial Keratotomy,” ASME Biomechanics Symposium, ASME AMD-Vol. 68/FED-Vol. 21, pp. 81–84.
Bryant, M. R., and Velinsky, S. A., 1989, “Design of Keratorefractive Surgical Procedures: Radial Keratotomy,” Advances in Design Automation, ASME DE-Vol. 19, pp. 383–391.
Hanna,  K. D., Jouve,  F., Bercovier,  M. H., and Waring,  G. O., 1989, “Computer Simulation of Lamellar Keratectomy and Laser Myopic Keratomileusis,” J. Refract. Surg., 4, pp. 222–231.
Huang,  T., Bisarnsin,  T., Schachar,  R. A., and Black,  T. D., 1988, “Corneal Curvature Change Due to Structural Alteration by Radial Keratotomy,” ASME J. Biomech. Eng., 110, pp. 249–253.
Vito,  R. P., Shin,  T. J., and McCarey,  B. E., 1989, “A Mechanical Model of the Cornea: The Effects of Physiological and Surgical Factors on Radial Keratotomy Surgery,” Refract. Corneal Surg., 5, pp. 82–88.
Mow,  C. C., 1968, “A Theoretical Model of the Cornea for Use in Studies of Tonometry,” Bull. Math. Biophys., 30, pp. 437–453.
Rand,  R. H., Lubkin,  S. R., and Howland,  H. C., 1991, “Analytical Model of Cornea Surgery,” ASME J. Biomech. Eng., 113, pp. 239–241.
Bryant,  M. R., Marchi,  V., and Juhasz,  T., 2000, “Mathematical Model of Picosecond Laser Keratomileusis for High Myopia,” J. Refract. Surg., 16, pp. 155–162.
Timoshenko, S., and Woinowsky-Krieger, S., 1959, Theory of Plates and Shells, 2nd ed., McGraw-Hill, New York.
Munnerlyn,  C. R., Koons,  S. J., and Marshall,  J., 1988, “A Technique for Laser Refractive Surgery,” J. Cataract Refract. Surg., 14, pp. 46–52.
Blaker,  W. J., and Hersh,  P. S., 1994, “Theoretical and Clinical Effects of Preoperative Corneal Curvature on Excimer Laser Photorefractive Keratectomy,” J. Refract. Surg., 10, pp. 571–574.
Colliac,  J. P., Shammas,  J. H., and Bart,  D. J., 1994, “Photorefractive Keratectomy for the Correction of Myopia and Astigmatism,” Am. J. Ophthalmol., 117, pp. 369–380.
Woo,  S. L.-Y., Kobayashi,  A. S., Schlegel,  W. A., and Lawrence,  C., 1972, “Nonlinear Material Properties of Intact Cornea and Sclera,” Exp. Eye Res., 14, pp. 29–39.
Bryant,  M. R., and McDonnel,  P. J., 1996, “Constitutive Laws for Biomechanical Modeling of Refractive Surgery,” ASME J. Biomech. Eng., 118, pp. 473–481.
Le Grand Y., 1965, Optique physiologique, Tome 1. La Dioptrique de l’oeil et sa Correction, 2nd ed., Paris, Revue d’Optique, pp. 147–159.
Colliac,  J. P., and Shammas,  H. J., 1993, “Optics for Photorefractive Keratectomy,” J. Cataract Refract. Surg., 19, pp. 356–363.
Casebeer J. C., Lamellar Refractive Surgery, ISBN: 1-55642-286-5, Slack Incorp.
Sletten,  K., Yen,  K., Sayegh,  F., , 1999, “An in Vivo Model of Femtosecond Laser Intrastromal Refractive Surgery,” J. Ophthalmic Laser Surgery, 30, pp. 742–749.


Grahic Jump Location
Schematic representation of the cornea and of the treatment zone (for myopic correction)
Grahic Jump Location
Maximum lenticle thickness necessary to correct corneal refractive errors using different values of its diameter: d0=4, 5, 6 (mm). The Young’s modulus E=107 dynes/cw2 and the intraocular pressure p=2 104 dynes/cw2.
Grahic Jump Location
The “best fit” of the predictions based on the elastic shell model with Bausch & Lomb and VISX commercially available nomogram. The fitting parameter is the elasticity parameter Ef: (a) for diameter of the lenticle d0=5 mm; (b) for diameter of the lenticle d0=5.5 mm.
Grahic Jump Location
The nomograms from commercially available Bausch & Lomb software along with the results of calculations based on the elastic shell model for different diameters of removed tissue
Grahic Jump Location
Dependence of the post-operative Young’s modulus of the cornea on the thickness of the removed tissue for different diameters of it
Grahic Jump Location
Comparison of predicted corrections of the elastic shell model with the ALK nomograms. The diameters of the treatment zone are d0=4 mm and 4.2 mm. The value of the Young’s modulus is calculated from Eq. (5) using Table 1.
Grahic Jump Location
Geometry of the corneal refractive surgery for myopia




Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related Journal Articles
Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In