0
TECHNICAL PAPERS

The Role of Flow-Independent Viscoelasticity in the Biphasic Tensile and Compressive Responses of Articular Cartilage

[+] Author and Article Information
Chun-Yuh Huang, Van C. Mow, Gerard A. Ateshian

Departments of Mechanical Engineering and Biomedical Engineering, Columbia University, New York, NY 10027

J Biomech Eng 123(5), 410-417 (May 16, 2001) (8 pages) doi:10.1115/1.1392316 History: Received December 13, 2000; Revised May 16, 2001
Copyright © 2001 by ASME
Your Session has timed out. Please sign back in to continue.

References

Mow,  V. C., Kuei,  S. C., Lai,  W. M., and Armstrong,  C. G., 1980, “Biphasic Creep and Stress Relaxation of Articular Cartilage in Compression: Theory and Experiments,” ASME J. Biomech. Eng., 102, pp. 73–84.
Frank,  E. H., and Grodzinsky,  A. J., 1987, “Cartilage Electromechanics—II. A Continuum Model of Cartilage Electrokinetics and Correlation With Experiments,” J. Biomech., 20, pp. 629–639.
Lai,  W. M., Hou,  J. S., and Mow,  V. C., 1991, “A Triphasic Theory for the Swelling and Deformation Behaviors of Articular Cartilage,” ASME J. Biomech. Eng., 113, pp. 245–258.
Ateshian,  G. A., Warden,  W. H., Kim,  J. J., Grelsamer,  R. P., and Mow,  V. C., 1997, “Finite Deformation Biphasic Material Properties of Bovine Articular Cartilage From Confined Compression Experiments,” J. Biomech., 30, pp. 1157–1164.
Huyghe,  J. M., and Janssen,  J. D., 1997, “Quadriphasic Mechanics of Swelling Incompressible Porous Media,” Int. J. Eng. Sci., 35, pp. 793–802.
Gu,  W. Y., Lai,  W. M., and Mow,  V. C., 1998, “A Mixture Theory for Charged Hydrated Soft Tissues Containing Multi-electrolytes: Passive Transport and Swelling Behaviors,” ASME J. Biomech. Eng., 102, pp. 169–180.
Soulhat,  J., Buschmann,  M. D., and Shirazi-Adl,  A., 1999, “A Fibril-Network Reinforced Model of Cartilage in Unconfined Compression,” ASME J. Biomech. Eng., 121, pp. 340–347.
Cohen,  B., Lai,  W. M., and Mow,  V. C., 1998, “A Transversely Isotropic Biphasic Model for Unconfined Compression of Growth Plate and Chondroepiphysis,” ASME J. Biomech. Eng., 120, pp. 491–496.
Cohen,  B., Gardner,  T. R., and Ateshian,  G. A., 1993, “The Influence of Transverse Isotropy on Cartilage Indentation Behavior—A Study of the Human Humeral Head,” Trans. Orthop. Res. Soc., 18, p. 185.
Mow,  V. C., Good,  P. M., and Gardner,  T. R., 2000, “A New Method to Determine the Tensile Properties of Articular Cartilage Using the Indentation Test,” Trans. Orthop. Res. Soc., 25, p. 103.
Hayes,  W. C., and Mockros,  L. F., 1971, “Viscoelastic Properties of Human Articular Cartilage,” J. Appl. Physiol., 31, pp. 562–568.
Hayes,  W. C., and Bodine,  A. J., 1978, “Flow-Independent Viscoelastic Properties of Articular Cartilage Matrix,” J. Biomech., 11, pp. 407–419.
Mak,  A. F., 1986, “The Apparent Viscoelastic Behavior of Articular Cartilage—The Contributions From the Intrinsic Matrix Viscoelasticity and Interstitial Fluid Flows,” ASME J. Biomech. Eng., 108, pp. 123–130.
Setton,  L. A., Zhu,  W., and Mow,  V. C., 1993, “The Biphasic Poroviscoelastic Behavior of Articular Cartilage: Role of the Surface Zone in Governing the Compressive Behavior,” J. Biomech., 26, pp. 581–592.
Suh,  J.-K., and DiSilvestro,  M. R., 1999, “Biphasic Poroviscoelastic Behavior of Hydrated Biological Soft Tissue,” ASME J. Appl. Mech., 66, pp. 528–535.
Suh,  J.-K., and Bai,  S., 1997, “Biphasic Poroviscoelastic Behavior of Articular Cartilage in Creep Indentation Test,” Trans. Orthop. Res. Soc., 22, p. 823.
DiSilvestro, M. R., Zhu, Q., and Suh, J.-K., 1999, “Biphasic Poroviscoelastic Theory Predicts the Strain Rate Dependent Viscoelastic Behavior of Articular Cartilage,” Proc. 1999 Bioeng. Conf., ASME BED-Vol. 42, pp. 105–106.
Soltz,  M. A., and Ateshian,  G. A., 2000, “Interstitial Fluid Pressurization During Confined Compression Cyclical Loading of Articular Cartilage,” Ann. Biomed. Eng., 28, pp. 150–159.
Zhu,  W., Mow,  V. C., Koob,  T. J., and Eyre,  D. R., 1993, “Viscoelastic Shear Properties of Articular Cartilage and the Effects of Glycosidase Treatments,” J. Orthop. Res., 11, pp. 771–781.
Setton,  L. A., Mow,  V. C., and Howell,  D. S., 1995, “Mechanical Behavior of Articular Cartilage in Shear Is Altered by Transection of the Anterior Cruciate Ligament,” J. Orthop. Res., 13, pp. 473–482.
Mak,  A. F., 1986, “Unconfined Compression of Hydrated Viscoelastic Tissues: A Biphasic Poroviscoelastic Analysis,” Biorheology, 23, pp. 371–383.
Soltz,  M. A., and Ateshian,  G. A., 2000, “A Conewise Linear Elasticity Mixture Model for the Analysis of Tension-Compression Nonlinearity in Articular Cartilage,” ASME J. Biomech. Eng., 122, pp. 576–586.
Guilak,  F., Ratcliffe,  A., and Mow,  V. C., 1995, “Chondrocyte Deformation and Local Tissue Strain in Articular Cartilage: A Confocal Microscopy Study,” J. Orthop. Res., 13, pp. 410–421.
Schinagl,  R. M., Gurskis,  D., Chen,  A. C., and Sah,  R. L., 1997, “Depth-Dependent Confined Compression Modulus of Full-Thickness Bovine Articular Cartilage,” J. Orthop. Res., 15, pp. 499–506.
Wang,  C. C.-B., Soltz,  M. A., Mauck,  R. L., Valhmu,  W. B., Ateshian,  G. A., and Hung,  C. T., 2000, “Comparison of Equilibrium Axial Strain Distribution in Articular Cartilage Explants and Cell-Seeded Alginate Disks Under Unconfined Compression,” Trans. Orthop. Res. Soc., 25, p. 131.
Wang,  C. C.-B., Hung,  C. T., and Mow,  V. C., 2001, “An Analysis of the Effects of Depth-Dependent Aggregate Modulus on Articular Cartilage Stress-Relaxation Behavior in Compression,” J. Biomech., 34, pp. 75–84.
Li,  L. P., Buschmann,  M. D., and Shirazi-Adl,  A., 2000, “A Fibril Reinforced Nonhomogeneous Poroelastic Model for Articular Cartilage: Inhomogeneous Response in Unconfined Compression,” J. Biomech., 33, pp. 1533–1541.
Holmes,  M. H., and Mow,  V. C., 1990, “The Nonlinear Characteristics of Soft Gels and Hydrated Connective Tissues in Ultrafiltration,” J. Biomech., 23, pp. 1145–1156.
Soltz,  M. A., and Ateshian,  G. A., 1998, “Experimental Verification and Theoretical Prediction of Cartilage Interstitial Fluid Pressurization at an Impermeable Contact Interface in Confined Compression,” J. Biomech., 31, pp. 927–934.
Armstrong,  C. G., Mow,  V. C., and Lai,  W. M., 1984, “An Analysis of Unconfined Compression of Articular Cartilage,” ASME J. Biomech. Eng., 106, pp. 165–173.
Curnier,  A., He,  Q.-C., and Zysset,  P., 1995, “Conewise Linear Elastic Materials,” J. Elast., 37, pp. 1–38.
Kempson,  G. E., Freeman,  M. A., and Swanson,  S. A., 1968, “Tensile Properties of Articular Cartilage,” Nature (London), 220, pp. 1127–1128.
Woo,  S. L.-Y., Akeson,  W. H., and Jemmott,  G. F., 1976, “Measurements of Nonhomogeneous, Directional Mechanical Properties of Articular Cartilage in Tension,” J. Biomech., 9, pp. 785–791.
Armstrong,  C. G., and Mow,  V. C., 1982, “Variations in the Intrinsic Mechani-cal Properties of Human Articular Cartilage With Age, Degeneration, and Water Content,” J. Bone Jt. Surg., Am. Vol., 64A, pp. 88–94.
Akizuki,  S., Mow,  V. C., Muller,  F., Pita,  J. C., Howell,  D. S., and Manicourt,  D. H., 1986, “Tensile Properties of Human Knee Joint Cartilage: I. Influence of Ionic Conditions, Weight Bearing, and Fibrillation on the Tensile Modulus,” J. Orthop. Res., 4, pp. 379-392.
Akizuki,  S., Mow,  V. C., Muller,  F., Pita,  J. C., and Howell,  D. S., 1987, “Tensile Properties of Human Knee Joint Cartilage. II. Correlations Between Weight Bearing and Tissue Pathology and the Kinetics of Swelling,” J. Orthop. Res., 5, pp. 173-186.
Schmidt,  M. B., Mow,  V. C., Chun,  L. E., and Eyre,  D. R., 1990, “Effects of Proteoglycan Extraction on the Tensile Behavior of Articular Cartilage,” J. Orthop. Res., 8, pp. 353–363.
Huang, C.-Y., Stankiewicz, A., Ateshian, G. A., Flatow, E. L., Bigliani, L. U., and Mow, V. C., 1999, “Tensile and Compressive Stiffness of Human Glenohumeral Cartilage Under Finite Deformation,” Proc. 1999 Bioeng. Conf., ASME BED-Vol. 42, pp. 469–470.
Soltz,  M. A., Palma,  C., Barsoumian,  S., Wang,  C. C.-B., Hung,  C. T., and Ateshian,  G. A., 2000, “Multi-Axial Loading of Bovine Articular Cartilage in Unconfined Compression,” Trans. Orthop. Res. Soc., 25, p. 888.
Woo,  S. L.-Y, Simon,  B. R., Kuei,  S. C., and Akeson,  W. H., 1980, “Quasi-Linear Viscoelastic Properties of Normal Articular Cartilage,” ASME J. Biomech. Eng., 102, pp. 85–90.
Ahmed,  A. M., and Burke,  D. L., 1983, “In-Vitro Measurement of Static Pressure Distribution in Synovial Joints—Part I: Tibial Surface of the Knee,” ASME J. Biomech. Eng., 105, pp. 216-225.
Huberti,  H. H., and Hayes,  W. C., 1984, “Patellofemoral Contact Pressures. The Influence of Q-Angle and Tendofemoral Contact,” J. Bone Jt. Surg., Am. Vol., 66A, pp. 715–724.
Fung, Y. C., 1981, Biomechanics: Mechanical Properties of Living Tissues, Springer-Verlag, New York.
Mansour,  J. M., and Mow,  V. C., 1976, “The Permeability of Articular Cartilage Under Compressive Strain and at High Pressures,” J. Bone Jt. Surg., Am. Vol., 58A, pp. 509–516.
Khalsa,  P. S., and Eisenberg,  S. R., 1997, “Compressive Behavior of Articular Cartilage Is Not Completely Explained by Proteoglycan Osmotic Pressure,” J. Biomech., 30, pp. 589–594.
Mak, A. F., 1985, “Uniaxial Tension of Hydrated Viscoelastic Tissues,” ASME Adv. Bioengng, N. A. Langrana, ed., pp. 18–19.
LeRoux,  M. A., Ateshian,  G. A., Vail,  T. P., and Setton,  L. A., 2001, “Effects of Collagen Fiber Anisotropy on the Hydraulic Permeability of the Meniscus,” Trans. Orthop. Res. Soc., 26, p. 45.
Hodge,  W. A., Carlson,  K. L., Fijan,  R. S., Burgess,  R. G., Riley,  P. O., Harris,  W. H., and Mann,  R. W., 1989, “Contact Pressures From an Instrumented Hip Endoprosthesis,” J. Bone Jt. Surg., Am. Vol., 71A, pp. 1378–1386.
Lee,  R. C., Frank,  E. H., Grodzinsky,  A. J., and Roylance,  D. K., 1981, “Oscillatory Compressional Behavior of Articular Cartilage and Its Associated Electromechanical Properties,” ASME J. Biomech. Eng., 103, pp. 280–292.
Kim,  Y. J., Bonassar,  L. J., and Grodzinsky,  A. J., 1995, “The Role of Cartilage Streaming Potential, Fluid Flow and Pressure in the Stimulation of Chondrocyte Biosynthesis During Dynamic Compression,” J. Biomech., 28, pp. 1055–1066.
Buschmann,  M. D., Kim,  Y. J., Wong,  M., Frank,  E., Hunziker,  E. B., and Grodzinsky,  A. J., 1999, “Stimulation of Aggrecan Synthesis in Cartilage Explants by Cyclic Loading Is Localized to Regions of High Interstitial Fluid Flow,” Arch. Biochem. Biophys., 366, pp. 1–7.

Figures

Grahic Jump Location
Uniaxial tensile response of the biphasic-CLE-QLV and biphasic-CLE models, to a step strain of ε0=0.10 (10 percent), as derived from Eq. (13) by numerical inverse Laplace transformation
Grahic Jump Location
Dynamic modulus versus frequency under uniaxial tensile loading, for the biphasic-CLE-QLV and biphasic-CLE models: (a) magnitude; (b) phase angle. In the limit of high frequencies, the magnitude of the dynamic modulus is given by E+Y0+ in Eq. (16), whereas at low frequencies it is given by E+Y in Eq. (17)
Grahic Jump Location
Unconfined compression stress-relaxation response of the biphasic-CLE-QLV and biphasic-CLE models, to a ramp strain of magnitude ε0=0.10 (10 percent), and for three different ramp times (t0=3 s, 150 s, and 300 s), as derived from Eq. (13) by numerical inverse Laplace transformation
Grahic Jump Location
Dynamic modulus versus frequency under unconfined compression loading, for the biphasic-CLE-QLV and biphasic-CLE models: (a) magnitude; (b) phase angle. In the limit of high frequencies the magnitude of the dynamic modulus is given by E−Y0+ in Eq. (16), whereas at low frequencies it is given by E−Y in Eq. (17)
Grahic Jump Location
Typical experimental equilibrium tensile and compressive responses of human humeral head articular cartilage from the superficial and middle zones (55 y.o. male). The tensile response is measured from long prismatic samples with rectangular cross section, harvested parallel to the surface, along the split line direction; the compressive response is measured from cylindrical plugs harvested normal to the articular surface 34.
Grahic Jump Location
Experimental uniaxial tensile response of the superficial zone specimen of Fig. 5 to a ramp strain of ε0=0.02 (2 percent) and ramp time of t0=1 s, as a function of time
Grahic Jump Location
Typical experimental unconfined compression stress-relaxation response of bovine glenohumeral articular cartilage, to a ramp strain of magnitude ε0=0.05 (5 percent), and for two different ramp times (t0=0.126 s and t0=400 s)

Tables

Errata

Discussions

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related Journal Articles
Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In