0
TECHNICAL PAPERS

The Effects of External Compression on Venous Blood Flow and Tissue Deformation in the Lower Leg

[+] Author and Article Information
Guohao Dai, R. D. Kamm

The Center for Biomedical Engineering and the Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139

J. P. Gertler

Division of Vascular Surgery and the Vascular Research Laboratory, The Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114

J Biomech Eng 121(6), 557-564 (Dec 01, 1999) (8 pages) doi:10.1115/1.2800853 History: Received October 27, 1997; Revised November 04, 1998; Online October 30, 2007

Abstract

External pneumatic compression of the lower legs is effective as prophylaxis against deep vein thrombosis. In a typical application, inflatable cuffs are wrapped around the patient’s legs and periodically inflated to prevent stasis, accelerate venous blood flow, and enhance fibrinolysis. The purpose of this study was to examine the stress distribution within the tissues, and the corresponding venous blood flow and intravascular shear stress with different external compression modalities. A two-dimensional finite element analysis (FEA) was used to determine venous collapse as a function of internal (venous) pressure and the magnitude and spatial distribution of external (surface) pressure. Using the one-dimensional equations governing flow in a collapsible tube and the relations for venous collapse from the FEA, blood flow resulting from external compression was simulated. Tests were conducted to compare circumferentially symmetric (C ) and asymmetric (A ) compression and to examine distributions of pressure along the limb. Results show that A compression produces greater vessel collapse and generates larger blood flow velocities and shear stresses than C compression. The differences between axially uniform and graded-sequential compression are less marked than previously found, with uniform compression providing slightly greater peak flow velocities and shear stresses. The major advantage of graded-sequential compression is found at midcalf. Strains at the lumenal border are approximately 20 percent at an external pressure of 50 mmHg (6650 Pa) with all compression modalities.

Copyright © 1999 by The American Society of Mechanical Engineers
Your Session has timed out. Please sign back in to continue.

References

Figures

Tables

Errata

Discussions

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related Journal Articles
Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In