DeBakey, M. E., Lawrie, G. M., and H., G. D., 1985, “Patterns of Atherosclerosis and Their Surgical Significance,” Ann. Surg.

[CrossRef], 201 , pp. 115–131.

Hoff, H. F., Heideman, C. L., Jackson, R. L., Bayardo, R. J., Kim, H. S., and Gotto, A. M. J., 1975, “Localization Patterns of Plasma Apolipoproteins in Human Atherosclerotic Lesions,” Circ. Res., 37 , pp. 72–79.

Ross, R., 1993, “Atherosclerosis: A Defense Mechanism Gone Awry,” Am. J. Pathol., 143 , pp. 987–1002.

Tarbell, J. M., 2003, “Mass Transport in Arteries and the Localization of Atherosclerosis,” Annu. Rev. Biomed. Eng.

[CrossRef], 5 , pp. 79–118.

Ethier, C. R., 2002, “Computational Modeling of Mass Transfer and Links to Atherosclerosis,” Ann. Biomed. Eng.

[CrossRef], 30 , pp. 461–471.

Rappitsch, G., and Perktold, K., 1996, “Computer Simulation of Convective Diffusion Processes in Large Arteries,” J. Biomech.

[CrossRef], 29 , pp. 207–215.

Ma, P., Li, X., and Ku, D. N., 1997, “Convective Mass Transfer at the Carotid Bifurcation,” J. Biomech.

[CrossRef], 30 , pp. 565–571.

Rappitsch, G., Perktold, K., and Pernkopf, E., 1997, “Numerical Modeling of Shear-Dependent Mass Transfer in Large Arteries,” Int. J. Numer. Methods Fluids

[CrossRef], 25 , pp. 847–857.

Qiu, Y., and Tarbell, J. M., 2000, “Numerical Simulation of Oxygen Mass Transfer in a Compliant Curved Tube Model of a Coronary Artery,” Ann. Biomed. Eng.

[CrossRef], 28 , pp. 26–38.

Kaazempur-Mofrad, M. R., and Ethier, C. R., 2001, “Mass Transport in an Anatomically Realistic Human Right Coronary Artery,” Ann. Biomed. Eng.

[CrossRef], 29 , pp. 121–127.

Kaazempur-Mofrad, M. R., Wada, S., Myers, J. G., and Ethier, C. R., 2005, “Mass Transport and Fluid Flow in Stenotic Arteries: Axisymmetric and Asymmetric Models,” Int. J. Heat Mass Transfer, 48 , pp. 4510–4517.

Tada, S., and Tarbell, J. M., 2006, “Oxygen Mass Transport in a Compliant Carotid Bifurcation Model,” Ann. Biomed. Eng., 34 , pp. 1389–1399.

Deng, X., King, M., and Guidoin, R., 1993, “Localization of Atherosclerosis in Arterial Junctions. Modeling the Release Rate of Low Density Lipoprotein and Its Breakdown Products Accumulated in Blood Vessel Walls,” ASAIO J., 39 , pp. M489–M495.

Deng, X., King, M., and Guidoin, R., 1995, “Localization of Atherosclerosis in Arterial Junctions. Concentration Distribution of Low Density Lipoproteins at the Luminal Surface in Regions of Disturbed Flow,” ASAIO J., 41 , pp. 58–67.

Wada, S., and Karino, T., 1999, “Theoretical Study on Flow-Dependent Concentration Polarization of Low Density Lipoproteins at the Luminal Surface of a Straight Artery,” Biorheology, 36 , pp. 207–223.

Wada, S., and Karino, T., 2002, “Theoretical Prediction of Low-Density Lipoproteins Concentration at the Luminal Surface of an Artery With a Multiple Bend,” Ann. Biomed. Eng.

[CrossRef], 30 , pp. 778–791.

Wada, S., Koujiya, M., and Karino, T., 2002, “Theoretical Study of the Effect of Local Flow Disturbances on the Concentration of Low-Density Lipoproteins at the Luminal Surface of End-to-End Anastomosed Vessels,” Med. Biol. Eng. Comput.

[CrossRef], 40 , pp. 576–587.

Moore, J. A., and Ethier, C. R., 1997, “Oxygen Mass Transfer Calculations in Large Arteries,” ASME J. Biomech. Eng.

[CrossRef], 119 , pp. 469–475.

Stangeby, D. K., and Ethier, C. R., 2002, “Computational Analysis of Coupled Blood-Wall Arterial LDL Transport,” ASME J. Biomech. Eng.

[CrossRef], 124 , pp. 1–8.

Stangeby, D. K., and Ethier, C. R., 2002, “Coupled Computational Analysis of Arterial LDL Transport—Effects of Hypertension,” Comput. Methods Biomech. Biomed. Eng., 5 , pp. 233–241.

Zunino, P., 2002, “Mathematical and Numerical Modeling of Mass Transfer in the Vascular System,” Ph.D. thesis, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland.

Prosi, M., 2003, “Computer Simulation von Massetransportvorgängen in Arterien,” Ph.D. thesis, Technische Universität Graz, Graz, Austria.

Sun, N., Wood, N. B., Hughes, A. D., Thom, S. A. M., and Xu, X. Y., 2006, “Fluid-Wall Modelling of Mass Transfer in an Axisymmetric Stenosis: Effects of Shear-Dependent Transport Properties,” Ann. Biomed. Eng., 34 , pp. 1119–1128.

Karner, G., and Perktold, K., 2000, “Effect of Endothelial Injury and Increased Blood Pressure on Albumin Accumulation in the Arterial Wall: A Numerical Study,” J. Biomech.

[CrossRef], 33 , pp. 709–715.

Karner, G., Perktold, K., and Zehentner, H. P., 2001, “Computational Modeling of Macromolecule Transport in the Arterial Wall,” Comput. Methods Biomech. Biomed. Eng., 4 , pp. 491–504.

Prosi, M., Zunino, P., Perktold, K., and Quarteroni, A., 2005, “Mathematical and Numerical Models for Transfer of Low-Density Lipoproteins Through the Arterial Wall: A New Methodology for the Model Set Up With Applications to the Study of Disturbed Lumenal Flow,” J. Biomech.

[CrossRef], 38 , pp. 903–917.

Yang, N., and Vafai, K., 2006, “Modeling of Low-Density Lipoprotein (LDL) Transport in the Artery-Effects of Hypertension,” Int. J. Heat Mass Transfer

[CrossRef], 49 , pp. 850–867.

Sun, N., Wood, N. B., Hughes, A. D., Thom, S. A. M., and Xu, X. Y., 2007, “Effects of Transmural Pressure and Wall Shear Stress on LDL Accumulation in the Arterial Wall: A Numerical Study Using a Multi-Layered Model,” Am. J. Physiol. Heart Circ. Physiol., 292 , pp. H3148–H3157.

Caro, C. G., Fitz-Gerald, J. M., and Schroter, R. C., 1971, “Atheroma and Arterial Wall Shear Observation, Correlation and Proposal of a Shear Dependent Mass Transfer Mechanism for Atherogenesis,” Proc. R. Soc. London, Ser. B, 177 , pp. 109–159.

Ogunrinade, O., Kameya, G. T., and Truskey, G. A., 2002, “Effect of Fluid Stress on the Permeability of the Arterial Endothelium,” Ann. Biomed. Eng.

[CrossRef], 30 , pp. 430–446.

Jo, H., Dull, R. O., Hollis, T. M., and Tarbell, J. M., 1991, “Endothelial Albumin Permeability is Shear Dependent, Time Dependent, and Reversible,” Am. J. Physiol. Heart Circ. Physiol., 260 , pp. H1992–H1996.

Rappitsch, G., and Perktold, K., 1996, “Pulsatile Albumin Transport in Large Arteries: A Numerical Simulation Study,” ASME J. Biomech. Eng.

[CrossRef], 118 , pp. 511–519.

Sill, H. W., Chang, Y. S., Artman, J. R., Frangos, J. A., Hollis, T. M., and Tarbell, J. M., 1995, “Shear Stress Increases Hydraulic Conductivity of Cultured Endothelial Monolayers,” Am. J. Physiol. Heart Circ. Physiol., 268 , pp. 535–543.

Sun, N., Wood, N. B., Hughes, A. D., Thom, S. A. M., and Xu, X. Y., 2007, “Influence of Pulsatile Flow on LDL Transport in the Arterial Wall,” Ann. Biomed. Eng., 35 , pp. 1782–1790.

Kedem, O., and Katchalsky, A., 1958, “Thermodynamic Analysis of the Permeability of Biological Membranes to Non-Electrolytes,” Biochim. Biophys. Acta

[CrossRef], 27 , pp. 229–246.

Saber, N. R., Wood, N. B., Gosman, A. D., Merrifield, R. D., Yang, G. Z., Charrier, C. L., Gatehouse, P. D., and Firmin, D. N., 2003, “Progress Towards Patient-Specific Computational Flow Modeling of the Left Heart via Combination of Magnetic Resonance Imaging With Computational Fluid Dynamics.,” Ann. Biomed. Eng.

[CrossRef], 31 , pp. 42–52.

Kudo, S., Ikezawa, K., Matsumura, S., Ikeda, M., Oka, K., and Tanishita, K., 1998, “Effect of Wall Shear Stress on Macromolecule Uptake Into Cultured Endothelial Cells,” Trans. Jpn. Soc. Mech. Eng., Ser. B, 64 , pp. 367–374.

Womersley, J. R., 1955, “Method for the Calculation of Velocity, Rate of Flow and Viscous Drag in Arteries When the Pressure Gradient is Known,” J. Physiol. (London), 127 , pp. 553–563.

Meyer, G., Merval, R., and Tedgui, A., 1996, “Effects of Pressure-Induced Stretch and Convection on Low-Density Lipoprotein and Albumin Uptake in the Rabbit Aortic Wall,” Circ. Res., 79 , pp. 532–540.

Himburg, H. A., Grzybowski, D. M., Hazel, A. L., Lamack, J. A., X.-MLi., and Friedman, M. H., 2004, “Spatial Comparison Between Wall Shear Stress Measures and Porcine Arterial Endothelial Permeability,” Am. J. Physiol. Heart Circ. Physiol., 286 , pp. H1916–H1922.