Ungerleider, R. M., 2005, “Practice Patterns in Neonatal Cardiopulmonary Bypass,” ASAIO J., 51 (6), pp. 813–815.
Papantchev, V., Hristov, S., Todorova, D., Naydenov, E., Paloff, A., Nikolov, D., and Tschirkov, A. O. W., 2007, “Some Variations of the Circle of Willis, Important for Cerebral Protection in Aortic Surgery—A Study in Eastern Europeans,” Eur. J. Cardiothorac Surg., 31 (6), pp. 982–989.
Schumacher, J., Eichler, W., Heringlake, M., Sievers, H. H., and Klotz, K. F., 2004, “Intercompartmental Fluid Volume Shifts During Cardiopulmonary Bypass Measured by A-Mode Ultrasonography,” Perfusion, 19 (5), pp. 277–281.
Ündar, A., Vaughn, W. K., and Calhoon, J. H., 2000, “The Effects of Cardiopulmonary Bypass and Deep Hypothermic Circulatory Arrest on Blood Viscoelasticity and Cerebral Blood Flow in a Neonatal Piglet Model,” Perfusion, 15 (2), pp. 121–128.
Ündar, A., Koenig, K. M., Frazier, O. H., and Fraser, C. D., 2000, “Impact of Membrane Oxygenators on Pulsatile Versus Nonpulsatile Perfusion in a Neonatal Model,” Perfusion, 15 , pp. 111–120.
Travis, A. R., Giridharan, G. R., Pantalos, G. M., Dowling, R. D., Prabhu, S. D., Slaughter, M. S., Sobieski, M., Undar, A., Farrar, D. J., and Koenig, S. C., 2007, “Vascular Pulsatility in Patients With a Pulsatile- or Continuous-Flow Ventricular Assist Device,” J. Thorac. Cardiovasc. Surg., 133 (2), pp. 517–523.
Hetzer, R., Loebe, M., Potapov, E. V., Weng, Y., Stiller, B., Hennig, E., Alexi-Meskishvili, V., and Lange, P. E., 1998, “Circulatory Support With Pneumatic Paracorporeal Ventricular Assist Device in Infants and Children,” Ann. Thorac. Surg., 66 , pp. 1498–1506.
Konertz, W., Hotz, H., Schneider, M., Redlin, M., and Reul, H., 1997, “Clinical Experience With the MEDOS HIA-VAD System in Infants and Children: A Preliminary Report,” Ann. Thorac. Surg., 63 , pp. 1138–1144.
Skinner, S. C., Hirschl, R. B., and Bartlett, R. H., 2006, “Extracorporeal Life Support,” Semin Pediatr. Surg., 15 (4), pp. 242–250.
Hetzer, R., Potapov, E. V., Stiller, B., Weng, Y., Hübler, M., Lemmer, J., Alexi-Meskishvili, V., Redlin, M., Merkle, F., Kaufmann, F., and Hennig, E., 2006, “Improvement in Survival After Mechanical Circulatory Support With Pneumatic Pulsatile Ventricular Assist Devices in Pediatric Patients,” Ann. Thorac. Surg., 82 , pp. 917–925.
Ündar, A., 2002, “The ABCs of Research on Pulsatile Versus Nonpulsatile Perfusion During Cardiopulmonary Bypass,” Med. Sci. Monit., 8 (12), pp. ED21–4.
Undar, A., Masai, T., Beyer, E. A., Goddard-Finegold, J., McGarry, M. C., and Fraser, C. D., 2002, “Pediatric Physiologic Pulsatile Pump Enhances Cerebral and Renal Blood Flow During and After Cardiopulmonary Bypass,” Artif. Organs, 26 (11), pp. 919–923.
Mavroudis, C., 1978, “To Pulse or not to Pulse,” Ann. Thorac. Surg., 25 (3), pp. 259–271.
Ji, B., and Undar, A., 2007, “Precise Quantification of Pressure-Flow Waveforms During Pulsatile and Nonpulsatile Perfusion,” J. Thorac. Cardiovasc. Surg.
[CrossRef], 133 (5), p. 1395.
Weiss, W. J., Lukic, B., and Ündar, A., 2005, “Energy Equivalent Pressure and Total Hemodynamic Energy Associated With the Pressure-Flow Waveforms of a Pediatric Pulsatile Ventricular Assist Device,” ASAIO J., 51 (5), pp. 614–617.
Ündar, A., Owens, R. W., McGarry, M. C., Surprise, D. L., Kilpack, V. D., Mueller, M. W., McKenzie, E. D., and Fraser, C. D., 2005, “Comparison of Hollow-Fiber Membrane Oxygenators in Terms of Pressure Drop of the Membranes During Normothermic and Hypothermic Cardiopulmonary Bypass in Neonates,” Perfusion, 20 , pp. 135–138.
Ündar, A., Lodge, A. J., Daggett, C. W., Runge, T. M., Ungerleider, R. M., and Calhoon, J. H., 1998, “The Type of Aortic Cannula and Membrane Oxygenator Affect the Pulsatile Waveform Morphology Produced by a Neonate-Infant Cardiopulmonary Bypass System In Vivo,” Artif. Organs, 22 (8), pp. 681–686.
Gu, Y. J., De Kroon, T. L., Elstrodt, J. M., van Oeveren, W., Boonstra, P. W., and Rakhorst, G., 2005, “Augmentation of Abdominal Organ Perfusion During Cardiopulmonary Bypass With a Novel Intra-Aortic Pulsatile Catheter Pump,” Int. J. Artif. Organs, 28 (1), pp. 35–43.
Kaps, M., Haase, A., Mulch, J., Stertmann, W. A., and Thiel, A., 1989, “Pulsatile Flow Pattern in Cerebral Arteries During Cardiopulmonary Bypass. An Evaluation Based on Transcranial Doppler Ultrasound,” J. Cardiovasc. Surg., 30 (1), pp. 16–19.
Harrington, D. K., Fragomeni, F., and Bonser, R. S., 2007, “Cerebral Perfusion,” Ann. Thorac. Surg., 83 (2), pp. S799–804.
Ündar, A., Masai, T., Yang, S., Goddard-Finegold, J., Frazier, O. H., and Fraser, C. D., 1999, “Effects of Perfusion Mode on Regional and Global Organ Blood Flow in a Neonatal Piglet Model,” Ann. Thorac. Surg., 68 , pp. 1336–1343.
May-Newman, K. D., Hillen, B. K., Sironda, C. S., and Dembitsky, W., 2004, “Effect of LVAD Outflow Conduit Insertion Angle on Flow Through the Native Aorta,” J. Med. Eng. Technol., 28 (3), pp. 105–109.
May-Newman, K., Hillen, B., and Dembitsky, W., 2006, “Effect of Left Ventricular Assist Device Outflow Conduit Anastomosis Location on Flow Patterns in the Native Aorta,” ASAIO J.
[CrossRef], 52 (2), pp. 132–139.
Torii, R., Wood, N. B., Hughes, A. D., Thom, S. A., Aguado-Sierra, J., Davies, J. E., Francis, D. P., Parker, K. H., and Xu, X. Y., 2007, “A Computational Study on the Influence of Catheter-Delivered Intravascular Probes on Blood Flow in a Coronary Artery Model,” J. Biomech., 40 (11), pp. 2501–2509.
Park, J. Y., Park, C. Y., and Min, B. G., 2007, “A Numerical Study on the Effect of Side Hole Number and Arrangement in Venous Cannulae,” J. Biomech., 40 (5), pp. 1153–1157.
Andersen, M. N., Ringgaard, S., Hasenkam, J. M., and Nygaard, H., 2004, “Quantitative Hemodynamic Evaluation of Aortic Cannulas,” Perfusion, 19 (5), pp. 323–330.
Foust, J., and Rockwell, D., 2006, “Structure of the Jet From a Generic Catheter Tip,” Exp. Fluids
[CrossRef], 41 , pp. 543–558.
Pekkan, K., Kitajima, H., Forbess, J., Fogel, M., Kanter, K., Parks, J. M., Sharma, S., and Yoganathan, A. P., 2005, “Total Cavopulmonary Connection Flow With Functional Left Pulmonary Artery Stenosis—Fenestration and Angioplasty In Vitro,” Circulation, 112 (21), pp. 3264–3271.
de Zélicourt, D., Pekkan, K., Parks, W. J., Kanter, K., Fogel, M., and Yoganathan, A. P., 2006, “Flow Study of an Extra-Cardiac Connection With Persistent Left Superior Vena Cava,” J. Thorac. Cardiovasc. Surg., 131 (4), pp. 785–791.
Pekkan, K., Whited, B., Kanter, K., Sharma, S., de Zélicourt, D., Sundareswaran, K., Frakes, D., Rossignac, J., and Yoganathan, A. P., 2008, “Patient Specific Surgical Planning and Hemodynamic Computational Fluid Dynamics Optimization Through Free-Form Haptic Anatomy Editing Tool (SURGEM),” Med. Biol. Eng. Comput., to be published.
Caro, C. G., Pedley, T. J., Schroter, R. C., and Seed, W. A., 1978, "The Mechanics of the Circulation", Oxford University Press, Oxford.
McDonald, D. A., 1974, "Blood Flow in Arteries", Edwards, Ann Arbor, MI/Arnold, London.
Fung, Y. C., 1984, "Biodynamics: Circulation", Springer, New York.
Mori, D., and Yamaguchi, T., 2002, “Computational Fluid Dynamics Modeling and Analysis of the Effect of 3-D Distortion of the Human Aortic Arch,” Comput. Methods Biomech. Biomed. Eng., 5 (3), pp. 249–260.
Nakamura, M., Wada, S., and Yamaguchi, T., 2006, “Computational Analysis of Blood Flow in an Integrated Model of the Left Ventricle and the Aorta,” J. Biomech. Eng.
[CrossRef], 128 , pp. 837–843.
Morris, L., Delassus, P., Callanan, A., Walsh, M., Wallis, F., Grace, P., and McGloughlin, T., 2005, “3-D Numerical Simulation of Blood Flow Through Models of the Human Aorta,” J. Biomech. Eng.
[CrossRef], 127 , pp. 767–775.
Wood, N. B., Weston, S. J., Kilner, P. J., Gosman, A. D., and Firmin, D. N., 2001, “Combined MR Imaging and CFD Simulation of Flow in the Human Descending Aorta,” J. Magn. Reson Imaging, 13 (5), pp. 699–713.
Leuprecht, A., Kozerke, S., Boesiger, P., and Perktold, K., 2003, “Blood Flow in the Human Ascending Aorta: A Combined MRI and CFD Study,” J. Eng. Math., 47 , pp. 387–404.
Jin, S., Oshinski, J., and Giddens, D. P., 2003, “Effects of Wall Motion and Compliance on Flow Patterns in the Ascending Aorta,” J. Biomech. Eng.
[CrossRef], 125 (3), pp. 347–354.
Suo, J., 2005, “Investigation of Blood Flow Patterns and Hemodynamics in the Human Ascending Aorta and Major Trunks of Right and Left Coronary Arteries Using Magnetic Resonance Imaging and Computational Fluid Dynamics,” Georgia Institute of Technology, Atlanta, GA.
Shahcheraghi, N., Dwyer, H. A., Cheer, A. Y., Barakat, A. I., and Rutaganira, T., 2002, “Unsteady and Three-Dimensional Simulation of Blood Flow in the Human Aortic Arch,” J. Biomech. Eng.
[CrossRef], 124 (4), pp. 378–387.
Feintuch, A., Ruengsakulrach, P., Lin, A., Zhang, J., Zhou, Y. Q., Bishop, J., Davidson, L., Courtman, D., Foster, F. S., Steinman, D. A., Henkelman, R. M., and Ethier, C. R., 2006, “Hemodynamics in the Mouse Aortic Arch as Assessed by MRI, Ultrasound, and Numerical Modeling,” Am. J. Physiol. Heart Circ. Physiol., 292 (2), pp. H884–892.
Jin, S., Ferrara, D. E., Sorescu, D., Guldberg, R. E., Taylor, W. R., and Giddens, D. P., 2007, “Hemodynamic Shear Stresses in Mouse Aortas: Implications for Atherogenesis,” Arterioscler., Thromb., Vasc. Biol., 27 (2), pp. 346–351.
Pekkan, K., Dasi, L. P., Nourparvar, P., Yerneni, S., Tobita, K., Fogel, M. A., Keller, B., and Yoganathan, A., 2008, “In Vitro Hemodynamic Investigation of the Embryonic Aortic Arch at Late Gestation,” J. Biomech., 41 (8), pp. 1697–1706.
Deplano, V., Knapp, Y., Bertrand, E., and Gaillard, E., 2007, “Flow Behaviour in an Asymmetric Compliant Experimental Model for Abdominal Aortic Aneurysm,” J. Biomech., 40 (11), pp. 2406–2413.
Di Martino, E. S., Guadagni, G., Fumero, A., Ballerini, G., Spirito, R., Biglioli, P., and Redaelli, A., 2001, “Fluid-Structure Interaction Within Realistic Three-Dimensional Models of the Aneurysmatic Aorta as a Guidance to Assess the Risk of Rupture of the Aneurysm,” Med. Eng. Phys.
[CrossRef], 23 (9), pp. 647–655.
Kleinstreuer, C., Li, Z., and Farber, M. A., 2007, “Fluid-Structure Interaction Analyses of Stented Abdominal Aortic Aneurysms,” Annu. Rev. Biomed. Eng., 9 , pp. 169–204.
Papaharilaou, Y., Ekaterinaris, J. A., Manousaki, E., and Katsamouris, A. N., 2007, “A Decoupled Fluid Structure Approach for Estimating Wall Stress in Abdominal Aortic Aneurysms,” J. Biomech.
[CrossRef], 40 (2), pp. 367–377.
Valencia, A. A., Guzman, A. M., Finol, E. A., and Amon, C. H., 2006, “Blood Flow Dynamics in Saccular Aneurysm Models of the Basilar Artery,” ASME J. Biomech. Eng.
[CrossRef], 128 (4), pp. 516–526.
Ettinger, S. J., 1975, "Textbook of Veterinary Internal Medicine", Saunders, Philadelphia, PA.
Capps, S. B., Elkins, R. C., and Fronk, D. M., 2000, “Body Surface Area as a Predictor of Aortic and Pulmonary Valve Diameter,” J. Thorac. Cardiovasc. Surg., 119 (5), pp. 975–982.
Fitzgerald, S. W., Donaldson, J. S., and Poznanski, A. K., 1987, “Pediatric Thoracic Aorta: Normal Measurements Determined With CT,” Radiology, 165 (3), pp. 667–669.
Tan, J., Silverman, N. H., Hoffman, J. I., Villegas, M., and Schmidt, K. G., 1992, “Cardiac Dimensions Determined by Cross-Sectional Echocardiography in the Normal Human Fetus From 18 Weeks to Term,” Am. J. Cardiol., 70 (18), pp. 1459–1467.
Poutanen, T., Tikanoja, T., Sairanen, H., and Jokinen, E., 2003, “Normal Aortic Dimensions and Flow in 168 Children and Young Adults,” Clin. Physiol. Funct. Imaging, 23 (4), pp. 224–229.
Frakes, D. H., Conrad, C. P., Healy, T. M., Monaco, J. W., Fogel, M., Sharma, S., Smith, M. J., and Yoganathan, A. P., 2003, “Application of an Adaptive Control Grid Interpolation Technique to Morphological Vascular Reconstruction,” IEEE Trans. Biomed. Eng.
[CrossRef], 50 (2), pp. 197–206.
Pekkan, K., Zelicourt, D., Ge, L., Sotiropoulos, F., Frakes, D., Fogel, M., and Yoganathan, A., 2005, “Physics-Driven CFD Modeling of Complex Anatomical Cardiovascular Flows—A TCPC Case Study,” Ann. Biomed. Eng.
[CrossRef], 33 (3), pp. 284–300.
Whitehead, K. K., Pekkan, K., Kitajima, H. D., Paridon, S. M., Yoganathan, A. P., and Fogel, M. A., 2007 “Non-Linear Power Loss During Exercise in Single-Ventricle Patients After the Fontan: Insights From Computational Fluid Dynamics,” Circulation, 116 , pp. I-165–I-171
Frakes, D. H., Smith, M. J., Parks, J., Sharma, S., Fogel, S. M., and Yoganathan, A. P., 2005, “New Techniques for the Reconstruction of Complex Vascular Anatomies From MRI Images,” J. Cardiovasc. Magn. Reson., 7 (2), pp. 425–432.
Chen, H. Y., Einstein, D. R., Chen, K., and Vesely, I., 2005, “Computational Modeling of Vascular Clamping: A Step Toward Simulating Surgery,” "Proceedings of the 2005 IEEE Engineering in Medicine and Biology 27th Annual Conference", Shanghai, China, Sep. 1–4.
Rossignac, J., Pekkan, K., Whited, B., Kanter, K., Sharma, S., and Yoganathan, A., 2006, “Surgem: Next Generation CAD Tools for Interactive Patient-Specific Surgical Planning and Hemodynamic Analysis,” Georgia Institute of Technology, Atlanta, GA.
Wang, C., Pekkan, K., de Zélicourt, D., Horner, M., Parihar, A., Kulkarni, A., and Yoganathan, A. P., 2007, “Progress in the CFD Modeling of Flow Instability in Anatomical Total Cavopulmonary Connections,” Ann. Biomed. Eng., 35 (11), pp. 1840–1856.
Salim, M. A., DiSessa, T. G., Arheart, K. L., and Alpert, B. S., 1995, “Contribution of Superior Vena Caval Flow to Total Cardiac Output in Children. A Doppler Echocardiographic Study,” Circulation, 92 (7), pp. 1860–1865.
Fischer, P. F., Loth, F., Lee, S. E., Lee, S., Smith, D. S., and Bassiouny, H. S., 2007, “Simulation of High-Reynolds Number Vascular Flows,” Comput. Methods Biomech. Biomed. Eng., 196 , pp. 3049–3060.
Fogel, M. A., Weinberg, P. M., Rychik, J., Hubbard, A., Jacobs, M., Spray, T. L., and Haselgrove, J., 1999, “Caval Contribution to Flow in the Branch Pulmonary Arteries of Fontan Patients With a Novel Application of Magnetic Resonance Presaturation Pulse,” Circulation, 99 (9), pp. 1215–1221.
Undar, A., Masai, T., Yang, S. Q., Eichstaedt, H. C., McGarry, M. C., Vaughn, W. K., Goddard-Finegold, J., and Fraser, C. D., 2001, “Global and Regional Cerebral Blood Flow in Neonatal Piglets Undergoing Pulsatile Cardiopulmonary Bypass With Continuous Perfusion at 25 Degrees C and Circulatory Arrest at 18 Degrees C,” Perfusion, 16 (6), pp. 503–510.
Undar, A., 2003, “Universal and Precise Quantification of Pulsatile and Nonpulsatile Pressure Flow Waveforms is Necessary for Direct and Adequate Comparisons Among the Results of Different Investigators,” Perfusion, 18 (2), pp. 135–136.
Healy, T. M., Lucas, C., and Yoganathan, A. P., 2001, “Noninvasive Fluid Dynamic Power Loss Assessments for Total Cavopulmonary Connections Using the Viscous Dissipation Function: A Feasibility Study,” ASME J. Biomech. Eng.
[CrossRef], 123 (4), pp. 317–324.
Venkatachari, A. K., Halliburton, S. S., Setser, R. M., White, R. D., and Chatzimavroudis, G. P., 2007, “Noninvasive Quantification of Fluid Mechanical Energy Losses in the Total Cavopulmonary Connection With Magnetic Resonance Phase Velocity Mapping,” Magn. Reson. Imaging, 25 (1), pp. 101–109.
Giersiepen, M., Wurzinger, L. J., Opitz, R., and Reul, H., 1990, “Estimation of Shear Stress-Related Blood Damage in Heart Valve Prostheses-In Vitro Comparison of 25 Aortic Valves,” Int. J. Artif. Organs, 13 (5), pp. 300–306.
Farinas, M. I., Garon, A., Lacasse, D., and N’Dri, D., 2006, “Asymptotically Consistent Numerical Approximation of Hemolysis,” ASME J. Biomech. Eng.
[CrossRef], 128 (5), pp. 688–696.
Garon, A., and Farinas, M. I., 2004, “Fast Three-Dimensional Numerical Hemolysis Approximation,” Artif. Organs
[CrossRef], 28 (11), pp. 1016–1025.
Arora, D., Behr, M., and Pasquali, M., 2004, “A Tensor-Based Measure for Estimating Blood Damage,” Artif. Organs
[CrossRef], 28 (11), pp. 1002–1015.
Arvand, A., Hormes, M., and Reul, H., 2005, “A Validated Computational Fluid Dynamics Model to Estimate Hemolysis in a Rotary Blood Pump,” Artif. Organs, 29 (7), pp. 531–540.
Austin, E. H., 2007, “Neuromonitoring During Pediatric Cardiopulmonary Bypass,” "Proceedings of the Third International Conference on Pediatric Mechanical Circulatory Support Systems and Pediatric Cardiopulmonary Perfusion", Heshey, PA, May 17–19.
Pekkan, K., Frakes, D., De Zelicourt, D., Lucas, C. W., Parks, W. J., and Yoganathan, A. P., 2005, “Coupling Pediatric Ventricle Assist Devices to the Fontan Circulation: Simulations With a Lumped-Parameter Model,” ASAIO J., 51 (5), pp. 618–628.
Moore, S., David, T., Chase, J. G., Arnold, J., and Fink, J., 2006, “3D Models of Blood Flow in the Cerebral Vasculature,” J. Biomech.
[CrossRef], 39 (8), pp. 1454–1463.
Bakhtiary, F., Dogan, S., Risteski, P., Ackermann, H., Oezaslan, F., Kleine, P., Moritz, A., and Aybek, T., 2007, “Mild Hypothermic (30C) Body Perfusion During Replacement of the Aortic Arch With a Novel Arterial Perfusion Cannula,” J. Thorac. Cardiovasc. Surg., 133 (6), pp. 1637–1639.
Orihashi, K., Matsuura, Y., Sueda, T., Watari, M., Okada, K., Sugawara, Y., and Ishii, O., 2000, “Aortic Arch Branches Are no Longer a Blind Zone for Transesophageal Echocardiography: A New Eye for Aortic Surgeons,” J. Thorac. Cardiovasc. Surg., 120 (3), pp. 466–472.
Yeh, T., Austin, E. H., Sehic, A., and Edmonds, H. L., 2003, “Rapid Recognition and Treatment of Cerebral Air Embolism: The Role of Neuromonitoring,” J. Thorac. Cardiovasc. Surg., 126 (2), pp. 589–591.
Fogel, M. A., Weinberg, P. M., and Haselgrove, J., 2002, “Nonuniform Flow Dynamics in the Aorta of Normal Children: A Simplified Approach to Measurement Using Magnetic Resonance Velocity Mapping,” J. Magn. Reson Imaging, 15 (6), pp. 672–678.
Fogel, M. A., Weinberg, P. M., and Haselgrove, J., 2003, “Flow Volume Asymmetry in the Right Aortic Arch in Children With Magnetic Resonance Phase Encoded Velocity Mapping,” Am. Heart J., 145 (1), pp. 154–161.
Stein, P. D., and Sabbah, H. N., 1976, “Turbulent Blood Flow in the Ascending Aorta of Humans With Normal and Diseased Aortic Valves,” Circ. Res., 39 (1), pp. 58–65.
Ku, D. N., 1997, “Blood Flow in Arteries,” Annu. Rev. Fluid Mech.
[CrossRef], 29 , pp. 399–434.
Lee, S. W., and Steinman, D. A., 2007, “On the Relative Importance of Rheology for Image-Based CFD Models of the Carotid Bifurcation,” ASME J. Biomech. Eng.
[CrossRef], 129 (2), pp. 273–278.
Hager, A., Kaemmerer, H., Rapp-Bernhardt, U., Blucher, S., Rapp, K., Bernhardt, T. M., Galanski, M., and Hess, J., 2002, “Diameters of the Thoracic Aorta Throughout Life as Measured With Helical Computed Tomography,” J. Thorac. Cardiovasc. Surg., 123 (6), pp. 1060–1066.
Osborn, A., 1999, "Diagnostic Cerebral Angiography", Lippincott, Philadelphia, PA/Williams & Wilkins, Baltimore, MD.
Szpinda, M., 2007, “Morphometric Study of the Brachiobicarotid Trunk in Human Fetuses,” Ann. Anat. Pathol. (Paris), 189 (6), pp. 569–574.
Leuprecht, A., Perktold, K., Prosi, M., Berk, T., Trubel, W., and Schima, H., 2002, “Numerical Study of Hemodynamics and Wall Mechanics in Distal End-to-Side Anastomoses of Bypass Grafts,” J. Biomech.
[CrossRef], 35 (2), pp. 225–236.
Moayeri, M. S., and Zendehbudi, G. R., 2003, “Effects of Elastic Property of the Wall on Flow Characteristics Through Arterial Stenoses,” J. Biomech., 36 (4), pp. 525–535.
Perktold, K., and Rappitsch, G., 1995, “Computer Simulation of Local Blood Flow and Vessel Mechanics in a Compliant Carotid Artery Bifurcation Model,” J. Biomech.
[CrossRef], 28 (7), pp. 845–856.
Cartier, M. S., Davidoff, A., Warneke, L. A., Hirsh, M. P., Bannon, S., Sutton, M. S., and Doubilet, P. M., 1987, “The Normal Diameter of the Fetal Aorta and Pulmonary Artery: Echocardiographic Evaluation in Utero,” AJR, Am. J. Roentgenol., 149 (5), pp. 1003–1007.
Struijk, P. C., Wladimiroff, J. W., Hop, W. C., and Simonazzi, E., 1992, “Pulse Pressure Assessment in the Human Fetal Descending Aorta,” Ultrasound Med. Biol., 18 (1), pp. 39–43.
Studinger, P., Lenard, Z., Reneman, R., and Kollai, M., 2000, “Measurement of Aortic Arch Distension Wave With the Echo-Track Technique,” Ultrasound Med. Biol., 26 (8), pp. 1285–1291.
Stylianopoulos, T., and Barocas, V. H., 2007, “Multiscale, Structure-Based Modeling for the Elastic Mechanical Behavior of Arterial Walls,” ASME J. Biomech. Eng.
[CrossRef], 129 (4), pp. 611–618.
Zhao, S., Xu, X., and Collins, M., 1998, “The Numerical Analysis of Fluid-Solid Interactions for Blood Flow in Arterial Structures Part 1: A Review of Models for Arterial Wall Behavior,” Proc. Inst. Mech. Eng., Part H: J. Eng. Med., 212 , pp. 229–240.
Bessems, D., Giannopapa, C. G., Rutten, M. C., and van de Vosse, F. N., 2008, “Experimental Validation of a Time-Domain-Based Wave Propagation Model of Blood Flow in Viscoelastic Vessels,” J. Biomech., 41 (2), pp. 284–291.