Geris, L., Vandamme, K., Naert, I., Vander Sloten, J., Duyck, J., and Van Oosterwycket, H., 2007, “Application of Mechanoregulatory Models to Simulate Peri-Implant Tissue Formation in an In Vivo Bone Chamber,” J. Biomech., 10 , pp. 1016.
Wu, Q.-Q., and Chen, Q., 2000, “Mechanoregulation of Chondrocyte Proliferation, Maturation, and Hypertrophy: Ion-Channel Dependent Transduction of Matrix Deformation Signals,” Exp. Cell Res., 256 , pp. 383–391.
McMahon, L. A., Reid, A. J., Campbell, V. A., and Prendergast, P. J., 2008, “Regulatory Effects of Mechanical Strain on the Chondrogenic Differentiation of MSCs in a Collagen-GAG Scaffold: Experimental and Computational Analysis,” Ann. Biomed. Eng., 36 (2), pp. 185–194.
Ignatius, A., Blessing, H., Liedert, A., Schmidt, C., Neidlinger-Wilke, C., Kaspar, D., Friemert, B., and Claes, L., 2005, “Tissue Engineering of Bone: Effects of Mechanical Strain on Osteoblastic Cells in Type, I. Collagen Matrices,” Biomaterials
[CrossRef], 26 , pp. 311–318.
Breuls, R. G. M., Sengers, B. G., Oomens, C. W. J., and Bouten, C. V. C., and Baaijens, F. P. T., 2005, “Predicting Local Cell Deformations in Engineered Tissue Constructs: A Multilevel Finite Element Approach,” ASME J. Biomech. Eng.
[CrossRef], 124 , pp. 198–207.
Di Palma, F., Douet, M., Boachon, C., Guignandon, A., Peyroche, S., Forest, B., Alexandre, C., Chamson, A., and Rattner, A., 2003, “Physiological Strains Induce Differentiation in Human Osteoblasts Cultured on Orthopaedic Biomaterial,” Biomaterials, 24 , pp. 3139–3151.
Raif, E. M., and Seedhom, B. B., 2005, “Effect of Cyclic Tensile Strain on Proliferation of Synovial Cells Seeded Onto Synthetic Ligament Scaffolds—An In Vitro Simulation,” Bone (N.Y.), 36 , pp. 433–443.
Sengers, B. G., and Taylor, M., Please, C. P., and Oreffo, R. O. C., 2007, “Computational Modelling of Cell Spreading and Tissue Regeneration in Porous Scaffolds,” Biomaterials, 28 , pp. 1926–1940.
Yannas, I. V., 1992, “Tissue Regeneration by Use of Collagen-Glycosaminoglycan Copolymers,” Clinical Materials, 9 (3–4), pp. 179–187.
Freyman, T. M., Yannas, I. V., Pek, Y.-S., Yokoo, R., and Gibson, L. J., 2001, “Micromechanics of Fibroblast Contraction of a Collagen-GAG Matrix,” Exp. Cell Res.
[CrossRef], 269 , pp. 140–153.
Freyman, T., Yannas, I., and Gibson, L., 2001, “Cellular Materials as Porous Scaffolds for Tissue Engineering,” Prog. Mater. Sci.
[CrossRef], 46 , pp. 273–282.
Freyman, T., Yannas, I., Yokoo, R., and Gibson, L., 2001, “Fibroblast Contraction of a Collagen-GAG Matrix,” Biomaterials
[CrossRef], 22 , pp. 2883–2891.
Kinner, B., and Spector, M., 2002, “Expression of Smooth Muscle Actin in Osteoblasts in Human Bone,” J. Orthop. Res., 20 , pp. 622–632.
Lee, C. R., Grodzinsky, A. J., and Spector, M., 2001, “The Effects of Cross-Linking of Collagen-Glycosaminoglycan Scaffolds on Compressive Stiffness, Chondrocyte-Mediated Contraction, Proliferation and Biosynthesis,” Biomaterials
[CrossRef], 22 (23), pp. 3145–3154.
Menard, C., Mitchell, S., and Spector, M., 2000, “Contractile Behavior of Smooth Muscle Actin-Containing Osteoblasts in Collagen-GAG Matrices In Vitro: Implant-Related Cell Contraction,” Biomaterials, 21 , pp. 1867–1877.
Schulz Torres, D., Freyman, T., Yannas, I., and Spector, M., 2000, “Tendon Cell Contraction of Collagen-GAG Matrices In Vitro: Effect of Crosslinking,” Biomaterials, 21 , pp. 1607–1619.
Zaleskas, J., Kinner, B., Freyman, T., Yannas, I., Gibson, L., and Spector, M., 2004, “Contractile Forces Generated by Articular Chondrocytes in Collagen-Glycosaminoglycan Matrices,.” Biomaterials
[CrossRef], 25 , pp. 1299–1308.
Jaecques, S. V. N., Van Oosterwyck, H., Muraru, L., Van Cleynenbreugel, T., De Smet, E., Wevers, M., Naert, I., and Vander Sloten, J., 2004, “Individualised, Micro CT-Based Finite Element Modelling as a Tool for Biomechanical Analysis Related to Tissue Engineering of Bone,” Biomaterials
[CrossRef], 25 (9), pp. 1683–1696.
Lacroix, D., Chateau, A., Ginebra, M.-P., and Planell, J. A., 2006, “Micro-Finite Element Models of Bone Tissue-Engineering Scaffolds,” Biomaterials, 27 , pp. 5326–5334.
Muraru, L., Jaecques, S. V. N., Demol, J., Naert, I., and Vander Sloten, J., 2006, “Validation of Image-Enhanced In Vivo MicroCT Based FE Models by Strain Gauge Measurements,” J. Biomech.
[CrossRef], 39 , p. S428.
Tuan Ho, S., and Hutmacher, D. W., 2006, “A Comparison of Micro CT With Other Techniques Used in the Characterization of Scaffolds,” Biomaterials
[CrossRef], 27 (8), pp. 1362–1376.
Mullins, L. P., McGarry, J. P., Bruzzi, M. S., and McHugh, P. E., 2007, “Micromechanical Modelling of Cortical Bone,” Comput. Methods Biomech. Biomed. Eng., 10 (3), pp. 159–169.
Cowin, S. C., 2004, “Anisotropic Poroelasticity: Fabric Tensor Formulation,” Mech. Mater.
[CrossRef], 36 , pp. 665–677.
Hart, R. T., 1990, “A Theoretical Study of the Influence of Bone Maturation Rate on Surface Remodeling Predictions: Idealized Models,” J. Biomech., 23 (3), pp. 241–257.
Sander, E. A., Downs, J. C., Hart, R. T., Burgoyne, C. F., and Nauman, E. A., 2006, “In-Plane Mechanics of the Optic Nerve Head With Cellular Solids Models,” J. Biomech.
[CrossRef], 39 , p. S385.
Hutmacher, D. W., Sittinger, M., and Risbud, M. V., 2004, “Scaffold-Based Tissue Engineering: Rationale for Computer-Aided Design and Solid Free-Form Fabrication Systems,” Trends Biotechnol.
[CrossRef], 22 (7), pp. 354–362.
Jones, A. C., Arns, C. H., Sheppard, A. P., Hutmacher, D. W., Milthorpe, B. K., and Knackstedt, M. A., 2007, “Assessment of Bone Ingrowth Into Porous Biomaterials Using Micro-CT,” Biomaterials, 28 (15), pp. 2491–2504.
Sun, W., Starly, B., Nam, J., and Darling, A., 2005, “Bio-CAD Modeling and Its Applications in Computer-Aided Tissue Engineering,” Comput.-Aided Des., 37 (11), pp. 1097–1114.
Van Lenthe, G. H., Hagenmüller, H., Bohner, M., Hollister, S. J., Meinel, L., and Müller, R., 2007, “Nondestructive Micro-Computed Tomography for Biological Imaging and Quantification of Scaffold-Bone Interaction In Vivo,” Biomaterials, 28 (15), pp. 2479–2490.
Yannas, I. V., and Hill, B. J., 2004, “Selection of Biomaterials for Peripheral Nerve Regeneration Using Data From the Nerve Chamber Model,” Biomaterials, 25 (9), pp. 1593–1600.
Farrell, E., Prendergast, P. J., O’Brien, F. J., and Campbell, V. A., 2006, “Temporal Expression of Osteogenic Markers in Mesenchymal Stem Cells When Cultured in Monolayer and on Collagen Glycosaminoglycan Scaffolds,” J. Biomech.
[CrossRef], 39 (1), p. S215.
O’Brien, F. J., Harley, B. A., Yannas, I. V., and Gibson, L. G., 2006, “The Effect of Pore Size on Cell Adhesion in Collagen-GAG Scaffolds,” Biomaterials
[CrossRef], 26 , pp. 433–441.
Thomson, S. W, 1887, “On the Division of Space With Minimum Partitional Area,” Acta Math., 11 , pp. 121–134.
Harley, B. A., Leung, J. H., Silva, E., and Gibson, L. J., 2007, “Mechanical Characterization of Collagen-Glycosaminoglycan Scaffolds,” Acta Biomaterialia, 3 , pp. 463–474.
O’Brien, F. J., Harley, B. A., Yannas, I. V., and Gibson, L. G., 2004, “Influence of Freezing Rate on Pore Structure in Freeze-Dried Collagen-GAG Scaffolds,” Biomaterials, 25 , pp. 1077–1086.
Gibson, L. J., 2005, “Biomechanics of Cellular Solids,” J. Biomech.
[CrossRef], 38 , pp. 377–399.
Kiviranta, P., Rieppo, J., Korhonen, R. K., Julkunen, P., Toyras, J., and Jurvelin, J. S., 2006, “Collagen Network Primarily Controls Poisson’s Ratio of Bovine Articular Cartilage in Compression,” J. Orthop. Res.
[CrossRef], 24 (4), pp. 690–699.
Stylianopoulos, T., and Barocas, V. H., 2007, “Volume-Averaging Theory for the Study of the Mechanics of Collagen Networks,” Comput. Methods Appl. Mech. Eng.
[CrossRef], 196 , pp. 2981–2990.
Li, L. P., Herzog, W., Korhonen, R. K., and Jurvelin, J. S., 2005, “The Role of Viscoelasticity of Collagen Fibers in Articular Cartilage: Axial Tension Versus Compression,” Med. Eng. Phys.
[CrossRef], 27 , pp. 51–57.
Thoumine, O., Ott, A., and Cardoso, O., 1999, “Microplates: A New Tool for Manipulation and Mechanical Perturbation of Individual Cells,” J. Biochem. Biophys. Methods
[CrossRef], 39 , pp. 47–62.
Eastwood, M., Porter, R., Khan, U., McGrouther, G., and Brown, R., 1996, “Quantitative Analysis of Collagen Gel Contractile Forces Generated by Dermal Fibroblasts and the Relationship to Cell Morphology,” J. Cell Physiol.
[CrossRef], 166 , pp. 33–42.
Freyman, T., Yannas, I., Yokoo, R., and Gibson, L., 2002, “Fibroblast Contractile Force is Independent of the Stiffness Which Resists the Contraction,” Exp. Cell Res.
[CrossRef], 272 , pp. 153–162.
Wrobel, L., Fray, T., Molloy, J., Adams, J., Armitage, M., and Sparrow, J., 2002, “Contractility of Single Human Dermal Myofibroblasts and Fibroblasts,” Cell Motil. Cytoskeleton
[CrossRef], 52 , pp. 82–90.
Gibson, L. J., and Ashby, M. F., 1997, "Cellular Solids: Structure and Properties", 2nd ed., Cambridge University Press, Cambridge.
Zhu, H. X., Knott, J. F., and Mills, N. J., 1997, “Analysis of the Elastic Properties of Open-Cell Foams With Tetrakaidecahedral Cells,” J. Mech. Phys. Solids
[CrossRef], 45 (3), pp. 319–343.
Roberts, A. P., and Garboczi, E. J., 2002, “Elastic Properties of Model Random Three-Dimensional Open-Cell Solids,” J. Mech. Phys. Solids
[CrossRef], 50 , pp. 33–55.
Wall, M., Weinhold, P. S., Siu, T., Brown, T. D., and Banes, A. J., 2007, “Comparison of Cellular Strain With Applied Substrate Strain In Vitro,” J. Biomech., 40 , pp. 173–181.