Mow, V. C., Holmes, M. H., and Lai, W. M., 1984, “Fluid Transport and Mechanical Properties of Articular Cartilage: A Review,” J. Biomech.

[CrossRef], 17 , pp. 377–394.

Winlove, C. P., and Parker, K. H., 1995, “The Physiological Functions of Extracellular Matrix Macromolecules,” in "*Interstitium, Connective Tissue and Lymphatics*", R.K.Reed, N.G.McHale, J.L.Bert, C.P.Winlove, and G.A.Laine, eds., Portland Press, London, pp. 147–165.

Terzaghi, K., 1943, "*Theoretical Soil Mechanics*", Wiley, New York.

Biot, M. A., 1962, “Mechanics of Deformation and Acoustic Propagation in Porous Media,” J. Appl. Phys.

[CrossRef], 33 , pp. 1482–1498.

Simon, B. R., 1992, “Multiphasic Poroelastic Finite Element Models for Soft Tissue Structures,” Appl. Mech. Rev., 45 (6), pp. 191–218.

Wang, W., and Parker, K. H., 1995, “The Effect of Deformable Porous Surface Layers on the Motion of a Sphere in a Narrow Cylindrical Tube,” J. Fluid Mech.

[CrossRef], 283 , pp. 287–305.

Wang, W., 2007, “Change in Properties of the Glycocalyx Affects the Shear Rate and Stress Distribution on Endothelial Cells,” ASME J. Biomech. Eng.

[CrossRef], 129 , pp. 324–329.

Craine, R. E., Green, A. E., and Naghdi, P. M., 1970, “A Mixture of Viscous Elastic Materials With Different Constituent Temperature,” Q. J. Mech. Appl. Math., 23 , pp. 171–184.

Kenyon, D. E., 1976, “The Theory of an Incompressible Solid-Fluid Mixture,” Arch. Ration. Mech. Anal., 62 , pp. 131–147.

Elhers, W., 2002, “Foundations of Multiphasic and Porous Materials,” in "*Porous Media: Theory, Experiments and Numerical Applications*", W.Ehlers and J.Bluhm, eds., Springer-Verlag, Berlin, pp. 3–86.

Mow, V. C., Kuei, S. C., Lai, W. M., and Armstrong, C. G., 1980, “Biphasic Creep and Stress Relaxation of Articular Cartilage in Compression: Theory and Experiments,” ASME J. Biomech. Eng., 102 , pp. 73–84.

Goldsmith, A. A. J., Hayes, A., and Clift, S. E., 1996, “Application of Finite Elements to the Stress Analysis of Articular Cartilage,” Med. Eng. Phys., 18 (2), pp. 89–98.

Spilker, R. L., Donzelli, P. S., and Mow, V. C., 1992, “A Transversely Isotropic Biphasic Finite Element Model of the Meniscus,” J. Biomech.

[CrossRef], 25 (9), pp. 1027–1045.

Eisenberg, S. R., and Grodzinsky, A. J., 1986, “The Kinetics of Chemically Induced Nonequilibrium Swelling of Articular Cartilage and Corneal Stroma,” ASME J. Biomech. Eng., 109 , pp. 79–89.

Rajagopal, K. R., Wineman, A. S., and Vaishnav, R. N., 1981, “Application of the Theory of Interacting Media to Diffusion Processed in Soft Tissue,” "*Proceedings of the Biomechanics Division, ASME Winter Annual Meeting*", Washington, DC.

Schinagl, R. M., Gurskis, D., Chen, A. C., and Sah, R. L., 1997, “Depth-Dependent Confined Compression Modulus of Full-Thickness Bovine Articular Cartilage,” J. Orthop. Res.

[CrossRef], 15 , pp. 499–506.

Wang, C. B., Chahine, N. O., Hung, C. T., and Ateshian, G. A., 2002, “Optical Determination of Anisotropic Material Properties of Bovine Articular Cartilage in Compression,” J. Biomech.

[CrossRef], 36 , pp. 339–353.

Suh, J. K., and DiSilvestro, M. R., 1999, “Biphasic Poroviscoelastic Behavior of Hydrated Biological Soft Tissue,” ASME J. Appl. Mech.

[CrossRef], 66 , pp. 528–535.

Lai, W. M., Hou, J. S., and Mow, V. C., 1991, “A Triphasic Theory for the Swelling and Deformation Behaviours of Articular Cartilage,” ASME J. Biomech. Eng.

[CrossRef], 113 , pp. 245–258.

Gu, W. Y., Lai, W. M., and Mow, V. C., 1998, “A Mixture Theory for Charged-Hydrated Soft Tissue Containing Multi-Electrolytes: Passive Transport and Swelling Behaviours,” ASME J. Biomech. Eng.

[CrossRef], 120 , pp. 169–180.

Spilker, R. L., and Suh, J. K., 1990, “Formulation and Evaluation of a Finite Element Model for the Biphasic Model of Hydrated Soft Tissues,” Comput. Struct.

[CrossRef], 35 (4), pp. 425–439.

Luenberger, D. G., 1984, "*Linear and Nonlinear Programming*", Addison-Wesley, New York.

Simon, B. R., Wu, J. S. S., Carlton, M. W., France, E. P., Evans, J. H., and Kazarian, L. E., 1985, “Structural Models for Human Spinal Motion Segments Based on a Poroelastic View of the Intervertebral Disc,” ASME J. Biomech. Eng., 107 , pp. 327–335.

Reddy, J. N., and Gartling, D. K., 2001, "*The Finite Element Method in Heat Transfer and Fluid Dynamics*", CRC, London.

Lai, W. M., and Mow, V. C., 1980, “Drag-Induced Compression of Articular Cartilage During a Permeation Experiment,” Biorheology, 17 , pp. 111–123.

Kim, Y. J., Bonassar, L. J., and Grodzinsky, A. J., 1995, “The Role of Cartilage Streaming Potential, Fluid Flow and Pressure in the Stimulation of Chondrocyte Biosynthesis During Dynamic Compression,” J. Biomech.

[CrossRef], 28 (9), pp. 1055–1066.

Lee, D. A., Knight, M. M., Bolton, J. F., Idowu, B. D., Kayser, M. V., and Bader, D. L., 2000, “Chondrocyte Deformation Within Compressed Agarose Constructs at the Cellular and Sub-Cellular Levels,” J. Biomech.

[CrossRef], 33 (1), pp. 81–95.

Lyyra, T., Kiviranta, I., Vaatainen, U., Helminen, H. J., and Jurvelin, J. S., 1999, “In Vivo Characterization of Indentation Stiffness of Articular Cartilage in the Normal Human Knee,” J. Biomed. Mater. Res.

[CrossRef], 48 (4), pp. 482–487.

Lu, X. L., Sun, D. D., Guo, X. E., Chen, F. H., Lai, W. M., and Mow, V. C., 2004, “Indentation Determined Mechanoelectrochemical Properties and Fixed Charge Density of Articular,” Ann. Biomed. Eng., 32 (3), pp. 370–379.

Wong, M., and Carter, D. R., 2003, “Articular Cartilage Functional Histomorphology and Mechanobiology: A Research Perspective,” Bone, 33 , pp. 1–13.

Parkkinen, J. J., Lammi, M. J., Hleminen, H. J., and Tammi, M., 1992, “Local Stimulation of Proteoglycan Synthesis in Articular Cartilage Explant by Dynamic Compression In Vitro,” J. Orthop. Res.

[CrossRef], 10 , pp. 610–620.

Barry, S. I., and Aldis, G. K., 1991, “Unsteady Fluid Flow Induced Deformation of Porous Material,” Int. J. Non-Linear Mech.

[CrossRef], 26 , pp. 687–699.

Lanir, Y., 1987, “Biorheology and Fluid Flux in Swelling Tissues. I. Biocomponent Theory for Small Deformations, Including Concentration Effects,” Biorheology, 24 , pp. 173–187.

Mauck, R. L., Hung, C. T., and Ateshian, G. A., 2003, “Modeling of Neutral Solute Transport in a Dynamically Loaded Porous Permeable Gel: Implications for Articular Cartilage Biosynthesis and Tissue Engineering,” ASME J. Biomech. Eng.

[CrossRef], 125 , pp. 602–614.

Lu, Y., 2006, “Theoretical Studies on the Transport of Fluid and Solutes in Soft Tissues and Across Biological Membrane,” Ph.D. thesis, Queen Mary, University of London, London.

Cuvelier, C., Segal, A., and van Steenhoven, A. A., 1985, "*Finite Elements Methods and Navier-Stokes Equations*", Reidel, Dordrecht.

Ehlers, W., and Markert, B., 2001, “A Linear Viscoelastic Biphasic Model for Soft Tissues Based on the Theory of Porous Media,” ASME J. Biomech. Eng.

[CrossRef], 123 (5), pp. 418–424.

Saad, Y., 1996, "*Iterative Methods for Sparse Linear System*", PWS, New York.

Weiss, J. A., and Maakestad, B. J., 2006, “Permeability of Human Medial Collateral Ligament in Compression Transverse to Collagen Fibre Direction,” J. Biomech.

[CrossRef], 39 , pp. 276–283.

Palmer, J. L., Bertone, A. L., Mansour, J., Carter, B. G., and Malemud, T. J., 1995, “Biomechanical Properties of Third Carpal Articular Cartilage in Exercised and Nonexercised Horses,” J. Orthop. Res., 13 , pp. 854–860.

Vermilyea, M. E., and Spilker, R. L., 1992, “A Hybrid Finite Element Formulation of the Linear Biphasic Equations for Hydrated Soft Tissue,” Int. J. Numer. Methods Eng.

[CrossRef], 33 , pp. 567–593.

Spilker, R. L., Suh, J. K., and Mow, V. C., 1992, “A Finite Element Analysis of the Indentation Stress-Relaxation Response of Linear Biphasic Articular Cartilage,” ASME J. Biomech. Eng.

[CrossRef], 114 , pp. 191–201.

Lu, Y., and Wang, W., 2004, “Solute Transport in Porous Medium Under External Loads,” "*2004 ASME Heat Transfer/Fluids Engineering Summer Conference*", Charlotte, NC, pp. 1–4, Paper No. HT-FED04-56159.

Kelkar, R., and Ateshian, G. A., 1999, “Contact Creep of Biphasic Cartilage Layers,” ASME J. Appl. Mech.

[CrossRef], 66 , pp. 137–145.