Wang, C. Y., 1981, “On the Low-Reynolds-Number Flow in a Helical Pipe,” J. Fluid Mech., 108 , pp. 185–194.
[CrossRef]Germano, M., 1982, “On the Effect of Torsion on a Helical Pipe Flow,” J. Fluid Mech., 125 , pp. 1–8.
[CrossRef]Kao, H. C., 1987, “Torsion Effect on Fully Developed Flow in a Helical Pipe,” J. Fluid Mech., 184 , pp. 335–356.
[CrossRef]Yamamoto, K., Yanase, S., and Yoshida, T., 1994, “Torsion Effect on the Flow in a Helical Pipe,” Fluid Dyn. Res., 14 , pp. 259–273.
[CrossRef]Berger, S. A., Talbot, L., and Yao, L. S., 1983, “Flow in Curved Pipes,” Annu. Rev. Fluid Mech.. 15 , pp. 461–512.
[CrossRef]Gammack, D., and Hydon, P. E., 2001, “Flow in Pipes with Non-Uniform Curvature and Torsion,” J. Fluid Mech., 433 , pp. 357–382. http://journals.
cambridge.org/action/displayAbstract?fromPage=online&aid=78603&fulltextType=RA&fileId=S0022112001003548
Peterson, S. D. and Plesniak, M. W., 2008, “The Influence of Inlet Velocity Profile and Secondary Flow on Pulsatile Flow in a Model Artery With Stenosis,” J. Fluid Mech., 616 , pp. 263–301.
[CrossRef]Moore, J. E., Guggenheim, N., Delfino, A., Doriot, P. A., Dorsaz, P. A., Rutishhauser, W., and Meister, J. J., 1994, “Preliminary Analysis of the Effects of Blood Vessel Movement on Blood Flow Patterns in the Coronary Arteries,” ASME J. Biomech. Eng., 116 , pp. 302–306.
[CrossRef]Santamarina, A., Weydahl, E., Siegel, J. M., and Moore, J. E., 1998, “Computational Analysis of Flow in a Curved Tube Model of the Coronary Arteries: Effects of Time-Varying Curvature,” Ann. Biomed. Eng., 26 , pp. 944–954.
[CrossRef]Moore, J. E., Weydahl, E. S., and Santamarina, A., 2001, “Frequency Dependence of Dynamic Curvature Effects on Flow Through Coronary Arteries,” ASME J. Biomech. Eng., 123 , pp. 129–133.
[CrossRef]Prosi, M., Perktold, K., Ding, Z., and Friedman, M. H., 2004, “Influence of Curvature Dynamics on Pulsatile Coronary Artery Flow in a Realistic Bifurcation Model,” J. Biomech., 37 , pp. 1767–1775.
[CrossRef]Zeng, D., Ding, Z., Friedman, M. H., and Ethier, C. R., 2003, “Effects of Cardiac Motion on Right Coronary Artery Hemodynamics,” Ann. Biomed. Eng., 31 , pp. 420–429.
[CrossRef]Theodorakakos, A., 2008, “Simulation of Cardiac Motion on Non-Newtonian, Pulsating Flow Development in the Human Left Anterior Descending Coronary Artery,” Phys. Med. Biol., 53 (18), pp. 4875–4892.
[CrossRef]Torii, R., 2009, “The Effect of Dynamic Vessel Motion on Haemodynamic Parameters in the Right Coronary Artery: A Combined MR and CFD Study,” Br. J. Radiol., 82 (1), pp. S24–S32.
[CrossRef]Ding, Z. H. and Friedman, M. H., 2000, “Dynamics of Human Coronary Arterial Motion and Its Potential Role in Coronary Atherogenesis,” ASME J. Biomech. Eng., 122 (5), pp. 488–492.
[CrossRef]Ding, Z. H. and Friedman, M. H., 2000, “Quantification of 3-D Coronary Arterial Motion Using Clinical Biplane Cineangiograms,” Int. J. Card. Imaging, 16 (5), pp. 331–346.
[CrossRef]Zhu, H., Ding, Z. H., Piana, R. N., Gehrig, T. R., and Friedman, M. H., 2009, “Cataloguing the Geometry of the Human Coronary Arteries: A Potential Tool for Predicting Risk of Coronary Artery Disease,” Int. J. Cardiol., 135 (1), pp. 43–52.
[CrossRef]Brinkman, A. M., Baker, P. B., Newman, W. P., Vigorito, R., and Friedman, M. H., 1994, “Variability of Human Coronary-Artery Geometry—An Angiographic Study of the Left Anterior Descending Arteries of 30 Autopsy Hearts,” Ann. Biomed. Eng., 22 (1), pp. 34–44.
[CrossRef]Patel, D. J. and Vaishnav, R. N. J. A., 1980, "Basic Hemodynamics and Its Role in Disease Processes", with chapters by V. J. Ferrans, H. B. Atabek, D. L. Fry, L. J. Thomas, J. C. Greenfield, R. N. Vaishnav, and D. J. Patel, ed., University Park, Baltimore.
Giddens, D. P., Zarins, C. K., and Glagov, S., 1993, “The Role of Fluid-Mechanics in the Localization and Detection of Atherosclerosis,” "Proceedings of the 1993 ASME/AICHE/ASCE Summer Bioengineering Conference", Forum on the 20th Anniversary of ASME Biomechanics Symposium, ASME, pp. 588–594.
Kamiya, A., Bukhari, R., and Togawa, T., 1984, “Adaptive Regulation of Wall Shear-Stress Optimizing Vascular Tree Function,” Bull. Math. Biol., 46 (1), pp. 127–137.
[CrossRef]Kamiya, A., and Togawa, T., 1980, “Adaptive Regulation of Wall Shear-Stress to Flow Change in the Canine Carotid Artery,” Am. Physiol., 239 (1), pp. H14–H21. http://ajpheart.physiology.org/content/239/1/H14.short
Perić, M., Kessler, R., and Scheuerer, G., 1988, “Comparison of Finite-Volume Numerical Methods With Staggered and Colocated Grids,” Comput. Fluids, 16 (4), pp. 389–403.
[CrossRef]Tafti, D. K., Sewall, E. A., Graham, A. B., and Thole, K. A., 2006, “Experimental Validation of Large Eddy Simulations of Flow and Heat Transfer in a Stationary Ribbed Duct,” Int. J. Heat Fluid Flow, 27 (2), pp. 243–258.
[CrossRef]Tafti, D. K., 2001, “GenIDLEST—A Scalable Parallel Computational Tool for Simulating Complex Turbulent Flows,” ASME Fluids Engineering Division (Publication), pp. 347–356.
Tafti, D. K., 2005, “Evaluating the Role of Subgrid Stress Modeling in a Ribbed Duct for the Internal Cooling of Turbine Blades,” Int.l J. Heat Fluid Flow, 26 (1), pp. 92–104.
[CrossRef]Elyyan, M. A., Rozati, A., and Tafti, D. K., 2008, “Investigation of Dimpled Fins for Heat Transfer Enhancement in Compact Heat Exchangers,” Int. J. Heat Mass Transfer, 51 (11-12), pp. 2950–2966.
[CrossRef]Selvarasu, N. K. C., Tafti, D. K., and Vlachos, P. P., 2011, “Hydrodynamic Effects of Compliance Mismatch in Stented Arteries,” ASME J Biomech Eng, 133 (2), p. 021008.
[CrossRef]Gopalakrishnan, P., and Tafti, D. K., 2009, “A Parallel Boundary Fitted Dynamic Mesh Solver for Applications to Flapping Flight,” Comput. Fluids, 38 (8), pp. 1592–1607.
[CrossRef]Tafti, D. K., 2011, “Time-Accurate Techniques for Turbulent Heat Transfer Analysis in Complex Geometries,” "Advances in Computational Fluid Dynamics and Heat Transfer", R.S.Amano Bengt, ed., WIT, Southampton, UK.
Gopalakrishnan, P., and Tafti, D. K., 2009, “Effect of Reynolds Number, Tip Shape, and Stroke Deviation on Flapping Flight,” "Proceedings of the 39th AIAA Fluid Dynamics Conference, Paper No. AIAA-2009-4193".
Gopalakrishnan, P., and Tafti, D. K., 2008, “Effect of Wing Flexibility on Lift and Thrust Production in Flapping Flight,” AIAA J. (submitted).
Gopalakrishnan, P., and Tafti, D. K., 2009, “Effect of Rotation and Angle of Attack on Force Production of Flapping Flights,” AIAA J. (in press).
Gopalakrishnan, P., and Tafti, D. K., 2008, “Effect of Phasing of Rotation on Delayed Stall in Flapping Flights Related to Mavs at Re = 10,000,” "AIAA 38th Fluid Dynamic Conference", Seattle, Washington.
Gopalakrishnan, P., and Tafti, D. K., 2009, “A Parallel Multiblock Boundary Fitted Dynamic Mesh Solver for Simulating Flows with Complex Boundary Movement,” Comput. Fluids, 38 , pp. 1592–1607.
[CrossRef]Lighthill, M. J., 1963, "Laminar Boundary Layers", Dover, New York.
Morton, B. R., 1984, “The Generation and Decay of Vorticity,” Geophys. Astrophys. Fluid Dyn., 28 (3-4), pp. 277–308.
[CrossRef]Karri, S., 2009, “Laminar and Transitional Flow Disturbances in Diseased and Stented Arteries,” Ph.D. dissertation, Virginia Tech, Blacksburg.
Canic, S., Hartley, C. J., Rosenstrauch, D., Tambaca, J., Guidoboni, G., and Mikelic, A., 2006, “Blood Flow in Compliant Arteries: An Effective Viscoelastic Reduced Model, Numerics, and Experimental Validation,” Ann. Biomed. Eng., 34 (4), pp. 575–592.
[CrossRef]Canic, S., and Kim, E. H., 2003, “Mathematical Analysis of the Quasilinear Effects in a Hyperbolic Model Blood Flow Through Compliant
Axi-Symmetric Vessels,” Math. Methods Appl/Sci., 26 (14), pp. 1161–1186.
[CrossRef]Canic, S., Lamponi, D., Mikelic, A., and Tambaca, J., 2005, “Self-Consistent Effective Equations Modeling Blood Flow in Medium-To-Large Compliant Arteries,” Multiscale Model. Simul., 3 (3), pp. 559–596.
[CrossRef]Canic, S., and Mikelic, A., 2003, “Effective Equations Modeling the Flow of a Viscous Incompressible Fluid Through a Long Elastic Tube Arising in the Study of Blood Flow Through Small Arteries,” SIAM J. Appl. Dyn. Syst., 2 (3), pp. 431–463.
[CrossRef]Canic, S., Tambaca, J., Mikelic, A., Hartley, C. J., Mirkovic, D., Chavez, J., and Rosenstrauch, D., “Blood Flow Through Axially Symmetric Sections of Compliant Vessels: New Effective Closed Models,” "Proceedings of the 26th Annual International Conference of the IEEE-Engineering-in-Medicine-and-Biology-Society", IEEE, pp. 3696–3699.
Mikelic, A., Guidoboni, G., and Canic, S., 2007, “Fluid-Structure Interaction in a Pre-Stressed Tube With Thick Elastic Walls I: The Stationary Stokes Problem,” Networks Heterog. Media, 2 (3), pp. 396–423.
[CrossRef]Shijie, L. and Masliyah, J. H., 1993, “Axially Invariant Laminar Flow in Helical Pipes With a Finite Pitch,” J. Fluid Mech., 251 , pp. 315–353.
[CrossRef]Yamamoto, K., Aribowo, A., Hayamizu, Y., Hirose, T., and Kawahara, K., 2002, “Visualization of the Flow in a Helical Pipe,” Fluid Dyn. Res., 30 , pp. 251–267.
[CrossRef]He, X. J., and Ku, D. N., 1996, “Pulsatile Flow in the Human Left Coronary Artery Bifurcation: Average Conditions,” ASME J. Biomech. Eng., 118 (1), pp. 74–82.
[CrossRef]