Shapiro, K., Kohn, I. J., Takei, F., and Zee, C., 2009, “Progressive Ventricular Enlargement in Cats in the Absence of Transmantle Pressure Gradients,” J. Neurosurg., 67 (1), pp. 88–92.
[CrossRef]Stephensen, H., Tisell, M., and Wikkelsö, C., 2002, “There is no Transmantle Pressure Gradient in Communicating or Noncommunicating Hydrocephalus,” Neurosurgery, 50 (4), pp. 763–773.
[CrossRef]Linninger, A. A., Xenos, M., Zhu, D. C., Somayaji, M. R., Kondapalli, S., and Penn, R. D., 2007, “Cerebrospinal Fluid Flow in the Normal and Hydrocephalic Human Brain,” IEEE Trans. Biomed. Eng.54 (2), pp. 291–302.
[CrossRef]Levine, D. N., 2008, “Intracranial Pressure and Ventricular Expansion in Hydrocephalus: Have we Been Asking the Wrong Question?” J. Neurol. Sci., 269 (1-2), pp. 1–11.
[CrossRef]Linninger, A., Sweetman, B., and Penn, R., 2009, “Normal and Hydrocephalic Brain Dynamics: The Role of Reduced Cerebrospinal Fluid Reabsorption in Ventricular Enlargement,” Ann. Biomed. Eng., 37 (7), pp. 1434–1447.
[CrossRef]Matsumoto, T., Nagai, H., Kasuga, Y., and Kamiya, K., 1986, “Changes in Intracranial Pressure (ICP) Pulse Wave Following Hydrocephalus,” Acta Neurochir., 82 (1), pp. 50–56.
[CrossRef]Penn, R. D., Lee, M. C., Linninger, A. A., Miesel, K., Lu, S. N., and Stylos, L., 2005, “Pressure Gradients in the Brain in an Experimental Model of Hydrocephalus,” J. Neurosurg., 102 (6), pp. 1069–1075.
[CrossRef]Penn, R. D., and Linninger, A., 2009, “The Physics of Hydrocephalus,” Pediatr. Neurosurg., 45 (3), pp. 161–174.
[CrossRef]Børgesen, S. E., 1984, “Conductance to Outflow of CSF in Normal Pressure Hydrocephalus,” Acta Neurochir., 71 (1), pp. 1–45.
[CrossRef]Bateman, G. A., 2000, “Vascular Compliance in Normal Pressure Hydrocephalus,” AJNR Am. J. Neuroradiol., 21 (9), pp. 1574–1585.
[CrossRef]
Tullberg, M., Jensen, C., Ekholm, S., and Wikkelso, C., 2001, “Normal Pressure Hydrocephalus: Vascular White Matter Changes on MR Images Must Not Exclude Patients from Shunt Surgery,” AJNR Am. J. Neuroradiol., 22 (9), pp. 1665–1673.
Sobey, I., and Wirth, B., 2006, “Effect of Non-Linear Permeability in a Spherically Symmetric Model of Hydrocephalus,” IMA J. Math Appl. Med. Biol., 23 (4), pp. 339–361.
[CrossRef]
Hamlat, A., Adn, M., Sid-ahmed, S., Askar, B., and Pasqualini, E., 2006, “Theoretical Considerations on the Pathophysiology of Normal Pressure Hydrocephalus (NPH) and NPH-Related Dementia,” Med. Hypotheses, 67 (1), pp. 115–123.
[CrossRef]Nagashima, T., Tamaki, N., Matsumoto, S., Horwitz, B., and Seguchi, Y., 1987, “Biomechanics of Hydrocephalus: A New Theoretical Model,” Neurosurgery, 21 (6), pp. 898–904.
[CrossRef]Levine, D., 1999, “The Pathogenesis of Normal Pressure Hydrocephalus: A Theoretical Analysis,” Bull. Math. Biol., 61 (5), pp. 875–916.
[CrossRef]Marmarou, A., Shulman, K., and LaMorgese, J., 1975, “Compartmental Analysis of Compliance and Outflow Resistance of the Cerebrospinal Fluid System,” J. Neurosurg., 43 (5), pp. 523–534.
[CrossRef]Linninger, A., Xenos, M., Sweetman, B., Ponkshe, S., Guo, X., and Penn, R., 2009, “A Mathematical Model of Blood, Cerebrospinal Fluid and Brain Dynamics,” J. Math. Biol., 59 (6), pp. 729–759.
[CrossRef]Levine, D. N., 2000, “Ventricular Size in Pseudotumor Cerebri and the Theory of Impaired CSF Absorption,” J. Neurol. Sci., 177 (2), pp. 85–94.
[CrossRef]Franceschini, G., Bigoni, D., Regitnig, P., and Holzapfel, G. A., 2006, “Brain Tissue Deforms Similarly to Filled Elastomers and Follows Consolidation Theory,” J. Mech. Phys. Solids, 54 (12), pp. 2592–2620.
[CrossRef]Hopkins, L. N., Bakay, L., Kinkel, W. R., and Grand, W., 1977, “Demonstration of Transventricular CSF Absorption by Computerized Tomography,” Acta Neurochir., 39 (3), pp. 151–157.
[CrossRef]Smillie, A., Sobey, I., and Molnar, Z., 2005, “A Hydroelastic Model of Hydrocephalus,” J. Fluid Mech., 539 (1), pp. 417–443.
[CrossRef]Momjian, S., and Bichsel, D., 2006, “Elastic and Poro-Elastic Models of Ventricular Dilatation in Hydrocephalus,” "COMSOL Users Conference", Grenoble.
Shahim, K., Drezet, J.-M., Molinari, J.-F., Sinkus, R., and Momjian, S., 2010, “Finite Element Analysis of Normal Pressure Hydrocephalus: Influence of CSF Content and Anisotropy in Permeability,” J. Appl. Biomater. Biomech., 7 (3), pp. 187–197.
[CrossRef]Kaczmarek, M., Subramaniam, R., and Neff, S., 1997, “The Hydromechanics of Hydrocephalus: Steady-State Solutions for Cylindrical Geometry,” Bull. Math. Biol., 59 (2), pp. 295–323.
[CrossRef]Biot, M. A., 1941, “General Theory of Three-Dimensional Consolidation,” J. Appl. Phys., 12 (2), pp. 155–164.
[CrossRef]Hakim, S., Venegas, J. G., and Burton, J. D., 1976, “The Physics of the Cranial Cavity, Hydrocephalus and Normal Pressure Hydrocephalus: Mechanical Interpretation and Mathematical Model,” Surg. Neurol., 5 (3), pp. 187–210.
Wirth, B., 2005, “A Mathematical Model for Hydrocephalus,” M.S. thesis, University of Oxford, St. Anne’s College, University of Oxford.
Green, M. A., Bilston, L. E., and Sinkus, R., 2008, “In vivo Brain Viscoelastic Properties Measured by Magnetic Resonance Elastography,” NMR Biomed., 21 (7), pp. 755–764.
[CrossRef]Gideon, P., Ståhlberg, F., Thomsen, C., Gjerris, F., Sørensen, P. S., and Henriksen, O., 1994, “Cerebrospinal Fluid Flow and Production in Patients with Normal Pressure Hydrocephalus Studied by MRI,” Neuroradiology, 36 (3), pp. 210–215.
[CrossRef]Momjian, S., Owler, B. K., Czosnyka, Z., Czosnyka, M., Pena, A., and Pickard, J. D., 2004, “Pattern of White Matter Regional Cerebral Blood Flow and Autoregulation in Normal Pressure Hydrocephalus,” Brain, 127 (5), pp. 965–972.
[CrossRef]
Silverberg, G. D., Huhn, S., Jaffe, R. A., Chang, S. D., Saul, T., Heit, G., Von Essen, A., and Rubenstein, E., 2002, “Downregulation of Cerebrospinal Fluid Production in Patients with Chronic Hydrocephalus,” J. Neurosurg., 97 (6), pp. 1271–1275.
[CrossRef]Czosnyka, M., Whitehouse, H., Smielewski, P., Simac, S., and Pickard, J. D., 1996, “Testing of Cerebrospinal Compensatory Reserve in Shunted and Non-Shunted Patients: A Guide to Interpretation Based on an Observational Study,” J. Neurol., Neurosurg. Psychiatry, 60 , pp. 549–558.
[CrossRef]May, C., Kaye, J. A., Atack, J. R., Schapiro, M. B., Friedland, R. P., and Rapoport, S. I., 1990, “Cerebrospinal Fluid Production is Reduced in Healthy Aging,” Neurology, 40 (1), pp. 500–503.
Marlin, A. E., Wald, A., Hochwald, G. M., and Malhan, C., 1978, “Kaolin-Induced Hydrocephalus Impairs CSF Secretion by the Choroid Plexus,” Neurology, 28 (9), pp. 945–949.
Dombrowski, S. M., Schenk, S., Leichliter, A., Leibson, Z., Fukamachi, K., and Luciano, M. G., 2006, “Chronic Hydrocephalus-Induced Changes in Cerebral Blood Flow: Mediation Through Cardiac Effects,” J. Cereb. Blood Flow Metab., 26 (10), pp. 1298–1310.
[CrossRef]Klinge, P. M., Samii, A., Muhlendyck, A., Visnyei, K., Meyer, G.-J., Walter, G. F., Silverberg, G. D., and Brinker, T., 2003, “Cerebral Hypoperfusion and Delayed Hippocampal Response After Induction of Adult Kaolin Hydrocephalus,” Stroke, 34 (1), pp. 193–199.
[CrossRef]Boon, A. J. W., Tans, J. T. J., Delwel, E. J., Egeler-Peerdeman, S. M., Hanlo, P. W., Wurzer, H. A. L., and Hermans, J., 1999, “Dutch Normal-Pressure Hydrocephalus Study: The Role of Cerebrovascular Disease,” J. Neurosurg., 90 (2), pp. 221–226.
[CrossRef]Bradley, W., Whittemore, A., Watanabe, A., Davis, S., Teresi, L., and Homyak, M., 1991, “Association of Deep White Matter Infarction with Chronic Communicating Hydrocephalus: Implications Regarding the Possible Origin of Normal-Pressure Hydrocephalus,” AJNR Am. J. Neuroradiol., 12 (1), pp. 31–39.
Boon, A. J. W., Tans, J. T. J., Delwel, E. J., Egeler-Peerdeman, S. M., Hanlo, P. W., Wurzer, H. A. L., Avezaat, C. J. J., de Jong, D. A., Gooskens, R. H. J. M., and Hermans, J., 1998, “Dutch Normal-Pressure Hydrocephalus Study: Randomized Comparison of Low- and Medium-Pressure Shunts,” J. Neurosurg., 88 (3), pp. 490–495.
[CrossRef]Silverberg, G. D., 2004, “Normal Pressure Hydrocephalus (NPH): Ischaemia, CSF Stagnation or Both,” Brain, 127 (5), pp. 947–948.
[CrossRef]Naidich, T. P., Epstein, F., Lin, J. P., Kricheff, I. I., and Hochwald, G. M., 1976, “Evaluation of Pediatric Hydrocephalus by Computed Tomography,” Radiology, 119 (2), pp. 337–345.
[CrossRef]Milhorat, T. H., Clark, R. G., Hammock, M. K., and McGrath, P. P., 1970, “Structural, Ultrastructural, and Permeability Changes in the Ependyma and Surrounding Brain Favoring Equilibration in Progressive Hydrocephalus,” Arch. Neurol., 22 (5), pp. 397–407.
[CrossRef]Shulyakov, A. V., Cenkowski, S. S., Buist, R. J., and Del Bigio, M. R., 2011, “Age-Dependence of Intracranial Viscoelastic Properties in Living Rats,” J. Mech. Behav. Biomed. Mater., 4 (3), pp. 484–497.
[CrossRef]Welch, K., 1963, “Secretion of Cerebrospinal Fluid by Choroid Plexus of the Rabbit,” Am. J. Physiol., 205 (3), pp. 617–624.
Del Bigio, M. R., 1995, “The Ependyma: A Protective Barrier Between Brain and Cerebrospinal Fluid,” Glia, 14 (1), pp. 1–13.
[CrossRef]Dutta-Roy, T., Wittek, A., and Miller, K., 2008, “Biomechanical Modelling of Normal Pressure Hydrocephalus,” J. Biomech., 41 (10), pp. 2263–2271.
[CrossRef]Peña, A., Harris, N., Bolton, M., Czosnyka, M., and Pickard, J., 2002, “Communicating Hydrocephalus: The Biomechanics of Progressive Ventricular Enlargement Revisited,” Acta Neurochir. Suppl. (Wien)81 , pp. 59–63.