Nessler, J. A., Timoszyk, W. K., Merlo, M., Emken, J. L., Minakata, K., Roy, R. R., de Leon, R. D., Edgerton, V. R., and Reinkensmeyer, D. J., 2005, “A Robotic Device for Studying Rodent Locomotion after Spinal Cord Injury,” IEEE Trans. Neural Syst. Rehab. Eng., 13 (4), pp. 497–506.
[CrossRef]Nessler, J. A., Minakata, K., Sharp, K., and Reinkensmeyer, D. J., 2007, “Robot Assisted Hindlimb Extension Increases the Probability of Swing Initiation During Treadmill Walking by Spinal Cord Contused Rats,” J. Neurosci. Meth., 159 (1), pp. 66–77.
[CrossRef]Cha, J., Heng, C., Reinkensmeyer, D. J., Roy, R. R., Edgerton, V. R., and de Leon, R. D., 2007, “Locomotor Ability in Spinal Rats Is Dependent on the Amount of Activity Imposed on the Hindlimbs During Treadmill Training,” J. Neurotrauma, 24 (6), pp. 1000–1012.
[CrossRef]de Leon, R. D., Kubasak, M. D., Phelps, P. E., Timoszyk, W. K., Reinkensmeyer, D. J., and Roy, R. R., 2002, “Using Robotics to Teach the Spinal Cord to Walk,” Brain Res. Rev., 40 , pp. 267–273.
[CrossRef]Cai, L. L., Fong, A. J., Otoshi, C. K., Liang, Y., Burdick, J. W., Roy, R. R., and Edgerton, V. R., 2006, “Implications of Assist-as-Needed Robotic Step Training after a Complete Spinal Cord Injury on Intrinsic Strategies of Motor Learning,” J. Neurosci., 26 (4), pp. 10564–10568.
[CrossRef]Nessler, J. A., Reinkensmeyer, D. J., Timoszyk, W., Nelson, K., Acosta, C., Roy, R. R., Edgerton, V. R., and de Leon, R. D., 2003, “The Use of a Body Weight Support Mechanism to Improve Outcome Assessment in the Spinal Cord Injured Rodent,” "Proc. 25th annual IEEE EMBS", Cancun, Mexico, pp. 1629–1632.
Nessler, J. A., de Leon, R. D., Sharp, K., Kwak, E., Minakata, K., and Reinkensmeyer, D. J., 2006, “Robotic Gait Analysis of Bipedal Treadmill Stepping by Spinal Contused Rats: Characterization of Intrinsic Recovery and Comparison with Bbb,” J. Neurotrauma, 23 (6), pp. 882–896.
[CrossRef]Timoszyk, W. K., De Leon, R. D., London, N., Roy, R. R., Edgerton, V. R., and Reinkensmeyer, D. J., 2002, “The Rat Lumbosacral Spinal Cord Adapts to Robotic Loading Applied During Stance,” J. Neurophys., 88 (6), pp. 3108–3117.
[CrossRef]Timoszyk, W. K., Nessler, J. A., Nelson, K., Acosta, C., Roy, R. R., Edgerton, V. R., de Leon, R. D., and Reinkensmeyer, D. J., 2005, “Relationship between Hindlimb Loading and Stepping Ability of Spinal Transected Rats,” Brain Res., 1050 (1–2), pp. 180–189.
[CrossRef]Nessler, J. A., Minakata, K., Sharp, K., and Reinkensmeyer, D. J., 2005, “Gait Activity Depends on Limb Extension and Phasing in Spinal Cord Contused Rodents: Implications for Robotic Gait Training and Assessment,” "Proc. IEEE International Conference on Rehabilitation Robotics", Chicago, IL, pp. 556–559.
Roy, R. R., Zhong, H., Siengthai, B., and Edgerton, V. R., 2005, “Activity-Dependent Influences Are Greater for Fibers in Rat Medial Gastrocnemius Than Tibialis Anterior Muscle,” Muscle Nerve, 32 , pp. 473–482.
[CrossRef]Roy, R. R., and Acosta, L., 1986, “Fiber Type and Fiber Size Changes in Selected Thigh Muscles Six Months after Low Thoracic Spinal Cord Transection in Adult Cats: Exercise Effects,” Exp. Neurol., 92 (3), pp. 675–685.
[CrossRef]Hutchinson, K. J., Linderman, J. K., and Basso, D. M., 2001, “Skeletal Muscle Adaptations Following Spinal Cord Contusion Injury in Rats and the Relationship to Locomotor Function: A Time Course Study,” J. Neurotrauma, 18 (10), pp. 1075–1089.
[CrossRef]Talmadge, R. J., Roy, R. R., Caiozzo, V. J., and Edgerton, V. R., 2002, “Mechanical Properties of Rat Soleus after Long-Term Spinal Cord Transection,” J. App. Physiol., 93 , pp. 1487–1497.
[CrossRef]Stevens, J. E., Min, L., Bose, P., O’steen, W. A., Thompson, F. J., Anderson, D. K., and Vandenborne, K., 2006, “Changes in Soleus Muscle Function and Fiber Morphology with One Week of Locomotor Training in Spinal Cord Contusion Injured Rats,” J. Neurotrauma, 23 (11).
Talmadge, R. J., Castro, M. J., Apple, D. F., and Dudley, G. A., 2002, “Phenotypic Adaptations in Human Muscle Fibers 6 and 24 Weeks after Spinal Cord Injury,” J. App. Physiol., 92 , pp. 147–154.
[CrossRef]Otis, J. S., Roy, R. R., Edgerton, V. R., and Talmadge, R. J., 2004, “Adaptations in Metabolic Capacity of Rat Soleus after Paralysis,” J. App. Physiol., 96 , pp. 584–596.
[CrossRef]Harkema, S. J., Hurley, S. L., Patel, U. K., Requejo, P. S., Dobkin, B. H., and Edgerton, V. R., 1997, “Human Lumbosacral Spinal Cord Interprets Loading During Stepping,” J. Neurophys., 77 , pp. 797–811.
Dietz, V., Wirz, M., Curt, A., and Colombo, G., 1998, “Locomotor Pattern in Paraplegic Patients: Training Effects and Recovery of Spinal Cord Function,” Spinal Cord, 36 , pp. 380–390.
[CrossRef]Kojima, N., Nakazawa, K., and Yano, H., 1999, “Effects of Limb Loading on the Lower-Limb Electromyographic Activity During Orthotic Locomotion in a Paraplegic Patient,” Neurosci. Lett., 274 , pp. 211–213.
[CrossRef]Behrman, A. L., and Harkema, S. J., 2000, “Locomotor Training after Human Spinal Cord Injury: A Series of Case Studies,” Phys. Ther., 80 (7), pp. 688–700.
de Leon, R. D., Hodgson, J. A., Roy, R. R., and Edgerton, V. R., 1998, “Locomotor Capacity Attributable to Step Training Versus Spontaneous Recovery after Spinalization in Adult Rats,” J. Neurophys., 79 (3), pp. 1329–1340.
Wernig, A., Muller, S., Nanassay, A., and Lagol, E., 1995, “Laufband Therapy On”Rules of Spinal Locomotion“Is Effective in Spinal Cord Injured Persons,” J. Neurosci., 7 (4), pp. 823–829.
[CrossRef]Howard, C. S., Blakeney, D. C., Medige, J., Moy, O. J., and Peimer, C. A., 2000, “Functional Assessment in the Rat by Ground Reaction Forces,” J. Biomech., 33 , pp. 751–757.
[CrossRef]Giszter, S. F., Davies, M. R., and Graziani, V., 2008, “Coordination Strategies for Limb Forces During Weight-Bearing Locomotion in Normal Rats and in Rats Spinalized as Neonates,” Exp. Brain Res., 190 , pp. 53–69.
[CrossRef]Webb, A. A., and Muir, G. D., 2004, “Course of Motor Recovery Following Ventrolateral Spinal Cord Injury in the Rat,” Behav. Brain Res., 155 , pp. 55–65.
[CrossRef]Boyd, B. S., Puttlitz, C., Noble-Haeusslein, L. J., John, C. M., Trivedi, A., and Topp, K. S., 2007, “Deviations in Gait Pattern in Experimental Models of Hindlimb Paresis Shown by a Novel Pressure Mapping System,” J. Neurosci. Res., 85 , pp. 2272–2283.
[CrossRef]Giszter, S. F., Davies, M. R., and Graziani, V., 2007, “Motor Strategies Used by Rats Spinalized at Birth to Maintain Stance in Response to Imposed Perturbations,” J. Neurophys., 97 , pp. 2663–2675.
[CrossRef]Willems, M. E. T., and Stauber, W. T., 2009, “The Effect of Number of Lengthening Contractions on Rat Isometric Force Production at Different Frequencies of Nerve Stimulation,” Acta Phsyiol., 196 , pp. 351–356.
[CrossRef]Shin, R. H., Vathana, T., Giessler, G. A., Friedrich, P. F., Bishop, A. T., and Shin, A. Y., 2008, “Isometric Tetanic Force Measurement Method of the Tibialis Anterior in the Rat,” Microsurgery, 28 , pp. 452–457.
[CrossRef]Ochi, E., Nakazato, K., and Ishii, N., 2007, “Effects of Eccentric Exercise on Joint Stiffness and Muscle Connectin (Titin) Isoform in the Rat Hindlimb,” J. Physiol. Sci., 57 (1), pp. 1–6.
[CrossRef]Nessler, J. A., Duhon, J., Keller, R., and Thys, T., 2010, “Animal-Robot Interaction Force as a Measure of Locomotor Function Following Spinal Cord Injury,” "Proc 34th annual meeting of the American Society of Biomechanics", Providence, RI, pp.
de Leon, R. D., See, P. A., and Chow, C. H. T., 2011, “Differential Effects of Low Versus High Amounts of Weight Supported Treadmill Training in Spinally Transected Rats,” J. Neurotrauma, 28 , pp. 1021–1033.
[CrossRef]Macias, M., Nowicka, D., Czupryn, A., Sulejczak, D., Skup, M., Skangiel-Kramska, J., and Czarkowska-Bauch, J., 2009, “Exercise-Induced Motor Improvement after Complete Spinal Cord Transection and Its Relation to Expression of Brain-Dreived Neurotrophic Factor and Presynaptic Markers,” BMC Neuroscience, 10 (144).
[CrossRef]Galvez, J. A., Kerdanyan, G., Maneekobkunwong, S., Weber, R., Scott, M., Harkema, S. J., and Reinkensmeyer, D. J., 2005, “Measuring Human Trainers’ Skill for the Design of Better Robot Control Algorithms for Gait Training after Spinal Cord Injury,” "Proc. International Conference on Rehabilitation Robotics", Chicago, IL, pp. 231–234.
Nessler, J. A., Reinkensmeyer, D. J., Timoszyk, W. K., Nelson, K., Acosta, C., Roy, R. R., Edgerton, V. R., and de Leon, R. D., 2003, “Use of a Body Weight Support Mechanism to Improve Outcome Assessment in the Spinal Cord Injured Rodent,” "Proc 25th Annual IEEE EMBS", Cancun, Mexico, pp. 1629–1632.
Basso, D. M., Beattie, M. S., and Bresnahan, J. C., 1995, “A Sensitive and Reliable Locomotor Rating Scale for Open Field Testing in Rats,” J. Neurotrauma, 12 , pp. 1–21.
[CrossRef]Liu, M., Bose, P., Walter, G. A., Thompson, F. J., and Vandenborne, K., 2008, “A Longitudinal Study of Skeletal Muscle Following Spinal Cord Injury and Locomotor Training,” Spinal Cord, 46 , pp. 488–493.
[CrossRef]Zhang, S., Huang, F., Gates, M., White, J., and Holmberg, E. G., 2010, “Tail Nerve Electrical Stimulation Induces Body-Weight Supported Stepping in Rats with Spinal Cord Injury,” J. Neurosci. Meth., 187 , pp. 183–189.
[CrossRef]