Anor, T., Grinberg, L., Baek, H., Madsen, J. R., Jayaraman, M. V., and Karniadakis, G. E., 2010, “Modeling of Blood Flow in Arterial Trees,” Wiley Interdiscip. Rev.: Syst. Biol. Med., 2 (5), pp. 612–623.

[CrossRef]Taylor, C. A., and Steinman, D. A., 2010, “Image-Based Modeling of Blood Flow and Vessel Wall Dynamics: Applications, Methods and Future Directions: Sixth International Bio-Fluid Mechanics Symposium and Workshop, March 28-30, (2008) Pasadena, California,” Ann. Biomed. Eng., 38 (3), pp. 1188–1203.

[CrossRef]Quarteroni, A., Tuveri, M., and Veneziani, A., 2000, “Computational Vascular Fluid Dynamics: Problems, Models and Methods,” Comput. Visualiz. Sci., 2 , pp. 163–197.

[CrossRef]Taylor, C. A., and Draney, M. T., 2004, “Experimental and Computational Methods in Cardiovascular Fluid Mechanics,” Annu. Rev. Fluid Mech., 36 (1), pp. 197–231.

[CrossRef]Vignon-Clementel, I. E., Marsden, A. L., and Feinstein, J. A., 2010, “A Primer on Computational Simulation in Congenital Heart Disease for the Clinician,” Progr. Pediatr. Cardiol., 30 (1–2), pp. 3–13.

[CrossRef]Migliavacca, F., and Dubini, G., 2005, “Computational Modeling of Vascular Anastomoses,” Biomech. Model. Mechanobiol., 3 (4), pp. 235–250.

[CrossRef]Bergel, D. H., 1961, “The Dynamic Elastic Properties of the Arterial Wall,” J. Physiol., 156 (3), pp. 458–469.

Learoyd, B. M., and Taylor, M. G., 1966, “Alterations With Age in the Viscoelastic Properties of Human Arterial Walls,” Circ. Res., 18 , pp. 278–292.

Westerhof, N., and Noordergraaf, A., 1970, “Arterial Viscoelasticity: A Generalized Model: Effect on Input Impedance and Wave Travel in the Systematic Tree,” J. Biomech., 3 , pp. 357–379.

[CrossRef]Wesseling, K. H., Weber, H., and de Wit, B., 1973, “Estimated Five Component Viscoelastic Model Parameters for Human Arterial Walls.,” J. Biomech., 6 , pp. 13–24.

[CrossRef]Tanaka, T. T., and Fung, Y. C., 1974, “Elastic and Inelastic Properties of the Canine Aorta and Their Variation Along the Aortic Tree,” J. Biomech., 7 (4), pp. 357–370.

[CrossRef]Holenstein, R., Niederer, P., and Anliker, M., 1980, “A Viscoelastic Model for Use in Predicting Arterial Pulse Waves,” J. Biomech. Eng., 102 (4), pp. 318–325.

[CrossRef]Cox, R. H., 1984, “Viscoelastic Properties of Canine Pulmonary Arteries,” Am. J. Physiol. Heart Circ. Physiol., 246 (1), pp. H90–H96.

Langewouters, G. J., Wesseling, K. H., and Goedhard, W. J. A., 1985, “The Pressure Dependent Dynamic Elasticity of 35 Thoracic and 16 Abdominal Human Aortas in Vitro Described by a Five Component Model,” J. Biomech., 18 (8), pp. 613–620.

[CrossRef]Imura, T., Yamamoto, K., Satoh, T., Kanamori, K., Mikami, T., and Yasuda, H., 1990, “In Vivo Viscoelastic Behavior in the Human Aorta,” Circ. Res., 66 (5), pp. 1413–1419.

Valdez-Jasso, D., Haider, M. A., Banks, H. T., Santana, D. B., Germán, Y. Z., Armentano, R. L., and Olufsen, M. S., 2009, “Analysis of Viscoelastic Wall Properties in Ovine Arteries,” IEEE Trans. Biomed. Eng., 56 (2), pp. 210–219.

[CrossRef]Alastruey, J., Parker, K. H., Peiró, J., Byrd, S. M., and Sherwin, S. J., 2007, “Modelling the Circle of Willis to Assess the Effects of Anatomical Variations and Occlusions on Cerebral Flows,” J. Biomech., 40 (8), pp. 1794–1805.

[CrossRef]Azer, K., and Peskin, C. S., 2007, “A One-Dimensional Model of Blood Flow in Arteries with Friction and Convection Based on the Womersley Velocity Profile,” Cardiovasc. Eng., 7 (2), pp. 51–73.

[CrossRef]Bessems, D., Rutten, M., and Van De Vosse, F., 2007, “A Wave Propagation Model of Blood Flow in Large Vessels Using an Approximate Velocity Profile Function,” J. Fluid Mech., 580 , pp. 145–168.

[CrossRef]Huo, Y., and Kassab, G. S., 2007, “A Hybrid One-Dimensional/Womersley Model of Pulsatile Blood Flow in the Entire Coronary Arterial Tree,” Am. J. Physiol. Heart Circ. Physiol., 292 (6), pp. H2623–H2633.

[CrossRef]Steele, B. N., Olufsen, M. S., and Taylor, C. A., 2007, “Fractal Network Model for Simulating Abdominal and Lower Extremity Blood Flow During Resting and Exercise Conditions,” Computer Methods in Biomechanics and Biomedical Engineering, 10 (1), pp. 39–51.

[CrossRef]Formaggia, L., Lamponi, D., Tuveri, M., and Veneziani, A., 2006, “Numerical Modeling of 1D Arterial Networks Coupled With a Lumped Parameters Description of the Heart,” Comput. Methods Biomech. Biomed. Eng., 9 (5), pp. 273–288.

[CrossRef]Vignon, I. E., and Taylor, C. A., 2004, “Outflow Boundary Conditions for One-Dimensional Finite Element Modeling of Blood Flow and Pressure Waves in Arteries,” Wave Motion, 39 , pp. 361–374.

[CrossRef]Sherwin, S. J., Franke, V., Peiró, J., and Parker, K., 2003, “One-Dimensional Modelling of a Vascular Network in Space-Time Variables,” J. Eng. Math., 47 , pp. 217–250.

[CrossRef]Wan, J., Steele, B., Spicer, S. A., Strohband, S., Feijóo, G. R., Hughes, T. J. R., and Taylor, C. A., 2002, “A One-Dimensional Finite Element Method for Simulation-Based Medical Planning for Cardiovascular Disease,” Comput. Methods Biomech. Biomed. Eng., 5 (3), pp. 195–206.

[CrossRef]Smith, N. P., Pullan, A. J., and Hunter, P. J., 2001, “An Anatomically Based Model of Transient Coronary Blood Flow in the Heart,” SIAM J. Appl. Math., 62 (3), pp. 990–1018.

[CrossRef]Olufsen, M. S., Peskin, C. S., Kim, W. Y., Pedersen, E. M., Nadim, A., and Larsen, J., 2000, “Numerical Simulation and Experimental Validation of Blood Flow in Arteries With Structured-Tree Outflow Conditions,” Ann. Biomed. Eng., 28 , pp. 1281–1299.

[CrossRef]Stergiopulos, N., Young, D. F., and Rogge, T. R., 1992, “Computer Simulation of Arterial Flow With Applications to Arterial and Aortic Stenoses,” J. Biomech., 25 (12), pp. 1477–1488.

[CrossRef]Papapanayotou, C. J., Cherruault, Y., and de La Rochefoucauld, B., 1990, “A Mathematical Model of the Circle of Willis in the Presence of an Arteriovenous Anomaly,” Comput. Math. Appl., 20 (4–6), pp. 199–206.

[CrossRef]Hillen, B., Hoogstraten, H. W., and Post, L., 1986, “A Mathematical Model of the Flow in the Circle of Willis,” J. Biomech., 19 (3), pp. 187–194.

[CrossRef]Zagzoule, M., and Marc-Vergnes, J.-P., 1986, “A Global Mathematical Model of the Cerebral Circulation in Man,” J. Biomech., 19 (12), pp. 1015–1022.

[CrossRef]Kufahl, R. H., and Clark, M. E., 1985, “A Circle of Willis Simulation Using Distensible Vessels and Pulsatile Flow,” J. Biomech. Eng., 107 (2), pp. 112–122.

[CrossRef]Stettler, J. C., Niederer, P., and Anliker, M., 1981, “Theoretical Analysis of Arterial Hemodynamics Including the Influence of Bifurcations Part I: Mathematical Model and Prediction of Normal Pulse Patterns,” Ann. Biomed. Eng., 9 , pp. 145–164.

[CrossRef]Stettler, J. C., Niederer, P., Anliker, M., and Casty, M., 1981, “Theoretical Analysis of Arterial Hemodynamics Including the Influence of Bifurcations Part II: Critical Evaluation of Theoretical Model and Comparison with Noninvasive Measurements of Flow Patterns in Normal and Pathological Cases,” Ann. Biomed. Eng., 9 , pp. 165–175.

[CrossRef]Raines, J. K., Jaffrin, M. Y., and Shapiro, A. H., 1974, “A Computer Simulation of Arterial Dynamics in the Human Leg,” J. Biomech., 7 , pp. 77–91.

[CrossRef]Schaaf, B. W., and Abbrecht, P. H., 1972, “Digital Computer Simulation of Human Systemic Arterial Pulse Wave Transmission: A Nonlinear Model,” J. Biomech., 5 (4), pp. 345–364.

[CrossRef]Wemple, R. R., and Mockros, L. F., 1972, “Pressure and Flow in the Systemic Arterial System,” J. Biomech., 5 , pp. 629–641.

[CrossRef]Westerhof, N., Bosman, F., De Vries, C. J., and Noordergraaf, A., 1969, “Analog Studies of the Human Systemic Arterial Tree,” J. Biomech., 2 (2), pp. 121–143.

[CrossRef]Noordergraaf, A., Verdouw, P. D., and Boom, H. B. K., 1963, “The Use of an Analog Computer in a Circulation Model,” Progr. Cardiovasc. Dis., 5 (5), pp. 419–439.

[CrossRef]Simon, A., and Levenson, J., 2001, “Effect of Hypertension on Viscoelasticity of Large arteries in Humans,” Curr. Hypertens. Rep., 3 (1), pp. 74–79.

[CrossRef]Armentano, R. L., Barra, J. G., Santana, D. B., Pessana, F. M., Graf, S., Craiem, D., Brandani, L. M., Baglivo, H. P., and Sanchez, R. A., 2006, “Smart Damping Modulation of Carotid Wall Energetics in Human Hypertension: Effects of Angiotensin-Converting Enzyme Inhibition,” Hypertension, 47 (3), pp. 384–390.

[CrossRef]Armentano, R., Megnien, J. L., Simon, A., Bellenfant, F., Barra, J., and Levenson, J., 1995, “Effects of Hypertension on Viscoelasticity of Carotid and Femoral Arteries in Humans,” Hypertension, 26 , pp. 48–54.

Anliker, M., Histand, M. B., and Ogden, E., 1968, “Dispersion and Attenuation of Small Artificial Pressure Waves in the Canine Aorta,” Circ. Res., 23 (4), pp. 539–551.

Avolio, A. P., 1980, “Multi-Branched Model of the Human Arterial System,” Med. Biol. Eng. Comput., 18 (6), pp. 709–718.

[CrossRef]Reuderink, P. J., Hoogstraten, H. W., Sipkema, P., Hillen, B., and Westerhof, N., 1989, “Linear and Nonlinear One-Dimensional Models of Pulse Wave Transmission at High Womersley Numbers,” J. Biomech., 22 (8/9), pp. 819–827.

[CrossRef]Fitchett, D. H., 1991, “LV-Arterial Coupling: Interactive Model to Predict Effect of Wave Reflections on LV Energetics,” Am. J. Physiol. Heart Circ. Physiol., 261 , pp. H1026–H1033.

Segers, P., Stergiopulos, N., Verdonck, P., and Verhoeven, R., 1997, “Assessment of Distributed Arterial Network Models,” Med. Biol. Eng. Comput., 35 (6), pp. 729–736.

[CrossRef]Pontrelli, G., 2002, “A Mathematical Model of Flow in a Liquid-Filled Visco-Elastic Tube,” Med. Biol. Eng. Comput., 40 (5), pp. 550–556.

[CrossRef]Formaggia, L., Lamponi, D., and QuarteroniA., 2003, “One-Dimensional Models for Blood Flow in Arteries,” J. Eng. Math., 47 (3), pp. 251–276.

[CrossRef]Bessems, D., Giannopapa, C. G., Rutten, M. C. M., and van de Vosse, F. N., 2008, “Experimental Validation of a Time-Domain-Based Wave Propagation Model of Blood Flow in Viscoelastic Vessels,” J. Biomech., 41 , pp. 284–291.

[CrossRef]Reymond, P., Merenda, F., Perren, F., Rüfenacht, D., and Stergiopulos, N., 2009, “Validation of a One-Dimensional Model of the Systemic Arterial Tree,” Am. J. Physiol. Heart Circ. Physiol., 297 , pp. H208–H222.

[CrossRef]Blanco, P. J., Urquiza, S. A., and Feijóo, R. A., 2010, “Assessing the Influence of Heart Rate in Local Hemodynamics Through Coupled 3D–1D–0D Models,” Int. J. Numer. Methods Biomed. Eng., 26 (April), pp. 890–903.

[CrossRef]Hughes, T. J. R., and Lubliner, J., 1973, “On the One-Dimensional Theory of Blood Flow in the Larger Vessels,” Math. Biosci., 18 (1–2), pp. 161–170.

[CrossRef]RoacheP. J., 2002, “Code Verification by the Method of Manufactured Solutions,” J. Fluids Eng., 124 , pp. 4–10.

[CrossRef]Knupp, P., and SalariK., 2002, "*Verification of Computer Codes in Computational Science and Engineering*", Chapman & Hall/CRC, Boca Raton, FL.

Olufsen, M. S., 1999, “Structured Tree Outflow Condition for Blood Flow in Larger Systemic Arteries,” Am. J. Physiol. Heart Circ. Physiol., 276 , pp. 257–268.

Puso, M. A., and Weiss, J. A., 1998, “Finite Element Implementation of Anisotropic Quasi-Linear Viscoelasticity Using a Discrete Spectrum Approximation,” J. Biomech. Eng., 120 (1), pp. 62–70.

[CrossRef]Holzapfel, G. A., Gasser, T. C., and Stadler, M., 2002, “A Structural Model for the Viscoelastic Behavior of Arterial Walls: Continuum Formulation and Finite Element Analysis,” Eur. J. Mech. A/Solids, 21 , pp. 441–463.

[CrossRef]Raghu, R., and Taylor, C. A., 2011, “Verification of a One-Dimensional Finite Element Method for Modeling Blood Flow in the Cardiovascular System Incorporating a Viscoelastic Wall Model,” Finite Elem. Anal. Design, 47 (6), pp. 586–592.

[CrossRef]Vignon-Clementel, I. E., Figueroa, C. A., Jansen, K. E., and Taylor, C. A., 2010, “Outflow Boundary Conditions for 3D Simulations of Non-Periodic Blood Flow and Pressure Fields in Deformable Arteries,” Comput. Methods Biomech. Biomed. Eng., 13 (5), pp. 625–640.

[CrossRef]Yeung, J. J., Kim, H. J., Abbruzzese, T. A., Vignon-Clementel, I. E., Draney-Blomme, M. T., Yeung, K. K., Perkash, I., Herfkens, R. J., Taylor, C. A., and DalmanR. L., 2006, “Aortoiliac Hemodynamic and Morphologic Adaptation to Chronic Spinal Cord Injury,” J. Vasc. Surg., 44 (6), pp. 1254–1265.e1.

[CrossRef]Les, A. S., Shadden, S. C., Figueroa, C. A., Park, J. M., Tedesco, M. M., Herfkens, R. J., Dalman, R. L., and TaylorC. A., 2010, “Quantification of Hemodynamics in Abdominal Aortic Aneurysms During Rest and Exercise Using Magnetic Resonance Imaging and Computational Fluid Dynamics,” Ann. Biomed. Eng., 38 (4), pp. 1288–1313.

[CrossRef]Milnor, W. R., 1989, "*Hemodynamics*", Williams & Wilkins, Baltimore, MD.