Ronkainen, A., and Hernesniemi, J., 1992, “Subarachnoid Haemorrhage of Unknown Aetiology,” Acta Neurochir. Suppl. (Wien), 119 (1–4), pp. 29–34.

[CrossRef]Crompton, M. R., 1966, “Mechanism of Growth and Rupture in Cerebral Berry Aneurysms,” Br. Med. J., 1 , pp. 1138–1142.

[CrossRef]Kassell, N. F., and Torner, J. C., 1983, “Size of Intracranial Aneurysms,” Neurosurgery, 12 , pp. 291–297.

[CrossRef]Ujiie, H., Sato, K., Onda, H., Oikkawa, A., Kagawa, M., Atakakura, K., and Kobayashi, N., 1993, “Clinical Analysis of Incidentally Discovered Unruptured Aneurysms,” Stroke, 24 , pp. 1850–1856.

Wiebers, D. O., Whisnant, J. P., Sundt, T. M., and O’Fallon, W. M., 1987, “The Significance of Unruptured Intracranial Saccular Aneurysms,” J. Neurosurg., 66 , pp. 23–29.

[CrossRef]The International Study of Unruptured Intracranial Aneurysms Investigators, 1998, “Unruptured Intracranial Aneurysms—Risk of Rupture and Risks of Surgical Intervention. International Study of Unruptured Intracranial Aneurysms Investigators,” N. Engl. J. Med., 339 , pp. 1725–1733.

[CrossRef]Ujiie, H., Tachibana, H., Hiramatsu, O., Hazel, A. L., Matsumoto, T., Ogasawara, Y., Nakajima, H., Hori, T., Takakura, K., and Kajiya, F., 1999, “Effects of Size and Shape (Aspect Ratio) on the Hemodynamics of Saccular Aneurysms: A Possible Index for Surgical Treatment of Intracranial Aneurysms,” Neurosurgery, 45 , pp. 119–130.

[CrossRef]Ujiie, H., Tamano, Y., Sasaki, K., and Hori, T., 2001, “Is the Aspect Ratio a Reliable Index for Predicting the Rupture of a Saccular Aneurysm?,” Neurosurgery, 48 , pp. 495–503.

[CrossRef]Raghavan, M. L., Ma, B., and Harbaugh, R. E., 2005, “Quantified Aneurysm Shape and Rupture Risk,” J. Neurosurg., 102 , pp. 355–362.

[CrossRef]Kyriacou, S. K., and Humphrey, J. D., 1996, “Influence of Size, Shape and Properties on the Mechanics of Axisymmetric Saccular Aneurysms,” J. Biomech., 29 , pp. 1015–1022.

[CrossRef]Shah, A. D., Harris, J. L., Kyriacou, S. K., and Humphrey, J. D., 1998, “Further Roles of Geometry and Properties in the Mechanics of Saccular Aneurysms,” Comput. Methods Biomech. Biomed. Eng., 1 , pp. 109–121.

Ma, B., Lu, J., Harbaugh, R. E., and Raghavan, M. L., 2007, “Nonlinear Anisotropic Stress Analysis of Anatomically Realistic Cerebral Aneurysms,” ASME J. Biomech. Eng., 129 , pp. 88–99.

[CrossRef]Lu, J., Zhou, X., and Raghavan, M. L., 2008, “Inverse Method of Stress Analysis for Cerebral Aneurysms,” Biomech. Model. Mechanobiol., 7 , pp. 477–486.

[CrossRef]Toth, M., Nadasy, G. L., Nyary, I., Kerényi, T., and Monos, E., 2000, “Are There Systemic Changes in the Arterial Biomechanics of Intracranial Aneurysm Patients?,” Eur. J. Physiol., 439 , pp. 573–578.

[CrossRef]Anderson, T., 2006, “Arterial Stiffness or Endothelial Dysfunction as a Surrogate Marker of Vascular Risk,” Can. J. Cardiol., 22 , pp. 72B–80B.

Balocco, S., Camara, O., Vivas, E., Sola, T., Guimaraens, L., Gratama van Andel, H. A. F., Majoie, C. B., Pozoc, J. M., Bijnens, B. H., and Frangi, A. F., 2010, “Feasibility of Estimating Regional Mechanical Properties of Cerebral Aneurysms In Vivo,” Med. Phys., 37 , pp. 1689–1706.

[CrossRef]Lu, J., and Zhao, X., 2009, “Pointwise Identification of Elastic Properties in Nonlinear Hyperelastic Membranes. Part I: Theoretical and Computational Developments,” ASME J. Appl. Mech., 76 , p. 061013.

[CrossRef]Zhao, X., Chen, X., and Lu, J., 2009, “Pointwise Identification of Elastic Properties in Nonlinear Hyperelastic Membranes. Part II: Experimental Validation,” ASME J. Appl. Mech., 76 , p. 061014.

[CrossRef]Govindjee, S., and Mihalic, P. A., 1996, “Computational Methods for Inverse Finite Elastostatics,” Comput. Methods Appl. Mech. Eng., 136 , pp. 47–57.

[CrossRef]Govindjee, S., and Mihalic, P. A., 1998, “Computational Methods for Inverse Deformations in Quasi-Incompressible Finite Elasticity,” Int. J. Numer. Methods Eng., 43 , pp. 821–838.

[CrossRef]Lu, J., Zhou, X., and Raghavan, M. L., 2007, “Inverse Elastostatic Stress Analysis in Pre-Deformed Biological Structures: Demonstration Using Abdominal Aortic Aneurysm,” J. Biomech., 40 , pp. 693–696.

[CrossRef]Zhou, X., and Lu, J., 2008, “Inverse Formulation for Geometrically Exact Stress Resultant Shells,” Int. J. Numer. Methods Eng., 74 , pp. 1278–1302.

[CrossRef]Zhao, X., Raghavan, M. L., and Lu, J., 2011, “Identifying Heterogeneous Anisotropic Properties in Cerebral Aneurysms: A Pointwise Approach,” Biomech. Model. Mechanobiol., 10 , pp. 177–189.

[CrossRef]Zhou, X., and Lu, J., 2009, “Estimation of Vascular Open Configuration Using Finite Element Inverse Elastostatic Method,” Eng. Comput., 25 , pp. 49–59.

[CrossRef]Zhou, X., Raghavan, M., Harbaugh, R., and Lu, J., 2010, “Patient-Specific Wall Stress Analysis in Cerebral Aneurysms Using Inverse Shell Model,” Ann. Biomed. Eng., 38 (2), pp. 478–489.

[CrossRef]Gee, M. W., Reeps, C., Eckstein, H. H., and Wall, W. A., 2009, “Prestressing in Finite Deformation Abdominal Aortic Aneurysm Simulation,” J. Biomech., 42 , pp. 1732–1739.

[CrossRef]Gee, M. W., Forster, Ch., and Wall, W. A., 2010, “A Computational Strategy for Prestressing Patient-Specific Biomechanical Problems Under Finite Deformation,” International Journal for Numerical Methods in Biomedical Engineering, 26 , pp. 52–72.

[CrossRef]Lu, J., “A Covariant Constitutive Theory for Anisotropic Hyperelastic Solids With Initial Strains,” Math. Mech. Solids, in press.

Noll, W., 1958, “A mathematical theory of the mechanical behavior of continuous media,” Arch. Ration. Mech. Anal., 2 , pp. 197–226.

[CrossRef]Lee, E. H., 1969, “Elastic-Plastic Deformation at Finite Strains,” ASME J. Appl. Mech., 36 , pp. 1–6.

Maugin, G. A., and Epstein, M., 1998, “Geometrical Material Structure of Elastoplasticity,” Int. J. Plast., 14 , pp. 109–115.

[CrossRef]Rodriguez, E. K., Hoger, A., and Mcculloch, A. D., 1994, “Stress-Dependent Finite Growth in Soft Elastic Tissues,” J. Biomech., 27 , pp. 455–467.

[CrossRef]Taber, L. A., 1995, “Biomechanics of Growth, Remodeling, and Morphogenesis,” Appl. Mech. Rev., 48 , pp. 487–545.

[CrossRef]Johnson, B. E., and Hoger, A., 1995, “The Use of a Virtual Configuration in Formulating Constitutive Equations for Residually Stressed Elastic Materials,” J. Elast., 41 , pp. 177–215.

[CrossRef]Hoger, A., 1997, “Virtual Configurations and Constitutive Equations for Residually Stressed Bodies With Material Symmetry,” J. Elast., 48 , pp. 125–144.

[CrossRef]Stålhand, J., Klarbring, A., and Karlsson, M., 2004, “Towards In Vivo Aorta Material Identification and Stress Estimation,” Biomech. Model. Mechanobiol., 2 , pp. 169–186.

[CrossRef]Olsson, T., Stålhand, J., and Klarbring, A., 2006, “Modeling Initial Strain Distribution in Soft Tissues With Application to Arteries,” Biomech. Model. Mechanobiol., 5 , pp. 27–38.

[CrossRef]Stålhand, J., 2009, “Determination of Human Arterial Wall Parameters From Clinical Data,” Biomech. Model. Mechanobiol., 8 , pp. 141–148.

[CrossRef]Kroon, M., and Holzapfel, G. A., 2008, “A New Constitutive Model for Multi-Layered Collagenous Tissues,” J. Biomech., 41 , pp. 2766–2771.

[CrossRef]Kroon, M., and Holzapfel, G. A., 2008, “Estimation of the Distribution of Anisotropic, Elastic Properties and Wall Stresses of Saccular Cerebral Aneurysms by Inverse Analysis,” Proc. R. Soc. London, Ser. A, 464 , pp. 807–825.

[CrossRef]Canham, P. B., Finlay, H. M., and Tong, S. Y., 1996, “Stereological Analysis of the Layered Collagen of Human Intracranial Aneurysms,” J. Microsc., 183 , pp. 170–180.

[CrossRef]Frosen, J., Piippo, A., Paetau, A., Kangasniemi, M., Niemela, M., Hernesniemi, J., and Jaaskelainen, J., 2004, “Remodeling of Saccular Cerebral Artery Aneurysm Wall Is Associated With Rupture: Histological Analysis of 24 Unruptured and 42 Ruptured Cases,” Stroke, 35 (10), pp. 2287–2293.

[CrossRef]Kataoka, K., Taneda, M., Asai, T., Kinoshita, A., Ito, M., and Kuroda, R., 1999, “Structural Fragility and Inflammatory Response of Ruptured Cerebral Aneurysms: A Comparative Study Between Ruptured and Unruptured Cerebral Aneurysms,” Stroke, 30 (7), pp. 1396–1401.

Taylor, R. L., 2003, FEAP User Manual, v7.5.

Green, A. E., and Adkins, J. E., 1970, "*Large Elastic Deformations*", 2nd ed., Clarendon, Oxford.

Doyle, T. C., and Ericksen, J. L., 1956, “Nonlinear Elasticity,” Adv. Appl. Mech., 4 , pp. 53–115.

[CrossRef]Gill, P. E., Murray, W., and Saunders, M. A., 2005, “SNOPT: An SQP Algorithm for Large-Scale Constrained Optimization,” SIAM Rev., 47 , pp. 99–131.

[CrossRef]Hayakawa, M., Katada, K., Anno, H., Imizu, S., Hayashi, J., Irie, K., Negoro, M., Kato, Y., Kanno, T., and Sano, H., 2005, “CT Angiography With Electrocardiographically Gated Reconstruction for Visualizing Pulsation of Intracranial Aneurysms: Identification of Aneurysmal Protuberance Presumably Associated With Wall Thinning,” AJNR Am. J. Neuroradiol., 26 (6), pp. 1366–1369.

Yaghmai, V., Rohany, M., Shaibani, A., Huber, M., Soud, H., Russell, E. J., and Walker, M. T., 2007, “Pulsatility Imaging of Saccular Aneurysm Model by 64-Slice CT With Dynamic Multiscan Technique,” J. Vasc. Interv. Radiol., 18 (6), pp. 785–788.

[CrossRef]Zhang, C., Craene, M., Villa-Uriol, M., Pozo, J. M., Bijnens, B. H., and Frangi, A. F., 2009, “Estimating Continuous 4D Wall Motion of Cerebral Aneurysms From 3D Rotational Angiography,” "*Proceedings of the 12th International Conference on Medical Image Computing and Computer-Assisted Intervention: Part I*", Springer-Verlag, London, pp. 140–147.

Zhang, C., Villa-Uriol, M. C., De Craene, M., Pozo, J., and Frangi, A., 2009, “Morphodynamic Analysis of Cerebral Aneurysm Pulsation From Time-Resolved Rotational Angiography,” IEEE Trans. Med. Imaging, 28 , pp. 1105–1116.

[CrossRef]Oubel, E., Cebral, J. R., De Craene, M., Blanc, R., Blasco, J., Macho, J., Putman, C. M., and Frangi, A. F., 2010, “Wall Motion Estimation in Intracranial Aneurysms,” Physiol. Meas., 31 (9), pp. 1119–1135.

[CrossRef]Patel, V., Hoffmann, K. R., Ionita, C. N., Keleshis, C., Bednarek, D. R., and Rudin, R., 2008, “Rotational Micro-CT Using a Clinical C-Arm Angiography Gantry,” Med. Phys., 35 , pp. 4757–4764.

[CrossRef]Raabe, A., Beck, J., Gerlach, R., Zimmermann, M., and Seifert, V., 2003, “Near-Infrared Indocyanine Green Video Angiography: A New Method for Intraoperative Assessment of Vascular Flow,” Neurosurgery, 52 , pp. 132–139.

[CrossRef]