Stolk, J., Verdonschot, N., Cristofolini, L., Toni, A., and Huiskes, R., 2002, “Finite Element and Experimental Models of Cemented Hip Joint Reconstructions Can Produce Similar Bone and Cement Strains in Pre-Clinical Tests,” J. Biomech.
[CrossRef], 35 (4), pp. 499–510.
Fagan, M., 1997, "Finite Element Analysis: Theory and Practice", Longman, Singapore.
Gray, H. A., Zavatsky, A. B., Taddei, F., Cristofolini, L., and Gill, H. S., 2007, “Experimental Validation of a Finite Element Model of a Composite Tibia,” Proc. Inst. Mech. Eng., Part H: J. Eng. Med., 221 , pp. 315–324.
Lengsfeld, M., Schmitt, J., Alter, P., Kaminsky, J., and Leppek, R., 1998, “Comparison of Geometry-Based and CT Voxel-Based Finite Element Modelling and Experimental Validation,” Med. Eng. Phys.
[CrossRef], 20 (7), pp. 515–522.
Waide, V., Cristofolini, L., Stolk, J., Verdonschot, N., Boogaard, G. J., and Toni, A., 2004, “Modelling the Fibrous Tissue Layer in Cemented Hip Replacements: Experimental and Finite Element Methods,” J. Biomech.
[CrossRef], 37 (1), pp. 13–26.
Taddei, F., Cristofolini, L., Martelli, S., Gill, H. S., and Viceconti, M., 2006, “Subject-Specific Finite Element Models of Long Bones: An In Vitro Evaluation of the Overall Accuracy,” J. Biomech., 39 (13), pp. 2457–2467.
Duda, G. N., Mandruzzato, F., Heller, M., Goldhahn, J., Moser, R., Hehli, M., Claes, L., and Haas, N. P., 2001, “Mechanical Boundary Conditions of Fracture Healing: Borderline Indications in the Treatment of Unreamed Tibial Nailing,” J. Biomech., 34 (5), pp. 639–650.
Duda, G. N., Mandruzzato, F., Heller, M., Kassi, J. P., Khodadadyan, C., and Haas, N. P., 2002, “Mechanical Conditions in the Internal Stabilization of Proximal Tibial Defects,” Clin. Biomech. (Bristol, Avon), 17 (1), pp. 64–72.
Perillo-Marcone, A., Barrett, D. S., and Taylor, M., 2000, “The Importance of Tibial Alignment: Finite Element Analysis of Tibial Malalignment,” J. Arthroplasty, 15 (8), pp. 1020–1027.
Perillo-Marcone, A., Alonso-Vazquez, A., and Taylor, M., 2003, “Assessment of the Effect of Mesh Density on the Material Property Discretisation Within QCT Based FE Models: A Practical Example Using the Implanted Proximal Tibia,” Comput. Methods Biomech. Biomed. Eng.
[CrossRef], 6 (1), pp. 17–26.
Ruff, C. B., and Hayes, W. C., 1983, “Cross-Sectional Geometry of Pecos Pueblo Femora and Tibiae—A Biomechanical Investigation: I. Method and General Patterns of Variation,” Am. J. Phys. Anthropol., 60 (3), pp. 359–381.
Viceconti, M., Toni, A., and Giunti, A., 1992, “Strain Gauge Analysis of Hard Tissues: Factors Influencing Measurements,” "Experimental Mechanics. Technology Transfer Between High Tech Engineering and Biomechanics", E.GLittle, ed., Elsevier Science, Amsterdam, pp. 177–184.
Cristofolini, L., and Viceconti, M., 2000, “Mechanical Validation of Whole Bone Composite Tibia Models,” J. Biomech.
[CrossRef], 33 (3), pp. 279–288.
Estépar, R. S. J., Brun, A., and Westin, C.-F., 2004, “Robust Generalized Total Least Squares Iterative Closest Point Registration,” "Medical Image Computing and Computer-Assisted Intervention—MICCAI 2004", pp. 234–241.
Polgar, K., Viceconti, M., O’Connor, J. J., 2001, “A Comparison Between Automatically Generated Linear and Parabolic Tetrahedra When Used to Mesh a Human Femur,” Proc. Inst. Mech. Eng., Part H: J. Eng. Med.
[CrossRef], 215 (1), pp. 85–94.
Gray, H. A., 2007, “Finite Element Analysis of the Human Tibia,” Ph.D. thesis, University of Oxford, Oxford.
Rho, J. Y., Hobatho, M. C., and Ashman, R. B., 1995, “Relations of Mechanical Properties to Density and CT Numbers in Human Bone,” Med. Eng. Phys.
[CrossRef], 17 (5), pp. 347–355.
Rho, J. Y., Ashman, R. B., and Turner, C. H., 1993, “Young’s Modulus of Trabecular and Cortical Bone Material: Ultrasonic and Microtensile Measurements,” J. Biomech.
[CrossRef], 26 (2), pp. 111–119.
Rho, J. Y., 1996, “An Ultrasonic Method for Measuring the Elastic Properties of Human Tibial Cortical and Cancellous Bone,” Ultrasonics
[CrossRef], 34 (8), pp. 777–783.
Zannoni, C., Mantovani, R., and Viceconti, M., 1998, “Material Properties Assignment to Finite Element Models of Bone Structures: A New Method,” Med. Eng. Phys.
[CrossRef], 20 (10), pp. 735–740.