Trabecular bone fracture is closely related to the trabecular architecture, microdamage accumulation, and bone tissue properties. Micro-finite-element models have been used to investigate the elastic and yield properties of trabecular bone but have only seen limited application in modeling the microstructure dependent fracture of trabecular bone. In this research, dynamic fracture in two-dimensional (2D) micrographs of ovine (sheep) trabecular bone is modeled using the cohesive finite element method. For this purpose, the bone tissue is modeled as an orthotropic material with the cohesive parameters calculated from the experimental fracture properties of the human cortical bone. Crack propagation analyses are carried out in two different 2D orthogonal sections cut from a three-dimensional $8mm$ diameter cylindrical trabecular bone sample. The two sections differ in microstructural features such as area fraction (ratio of the 2D space occupied by bone tissue to the total 2D space), mean trabecula thickness, and connectivity. Analyses focus on understanding the effect of the rate of loading as well as on how the rate variation interacts with the microstructural features to cause anisotropy in microdamage accumulation and in the fracture resistance. Results are analyzed in terms of the dependence of fracture energy dissipation on the microstructural features as well as in terms of the changes in damage and stresses associated with the bone architecture variation. Besides the obvious dependence of the fracture behavior on the rate of loading, it is found that the microstructure strongly influences the fracture properties. The orthogonal section with lesser area fraction, low connectivity, and higher mean trabecula thickness is more resistant to fracture than the section with high area fraction, high connectivity, and lower mean trabecula thickness. In addition, it is found that the trabecular architecture leads to inhomogeneous distribution of damage, irrespective of the symmetry in the applied loading with the fracture of the entire bone section rapidly progressing to bone fragmentation once the accumulated damage in any trabeculae reaches a critical limit.