Berry, J. L., Moore, J. E., Newman, V. S., and Routh, W. D., 1995, "In Vitro Flow Visualization in Stented Arterial Segments", ASME, San Francisco, CA, Vol. 31 , pp. 231–232.
Rachev, A., Manoach, E., Berry, J., and Moore, J. E., 2000, “Model of Stress-Induced Geometrical Remodeling of Vessel Segments Adjacent to Stents and Artery/Graft Anastomoses,” J. Theor. Biol., 206 (3), pp. 429–443.
[CrossRef]Rolland, P. H., Charifi, A. B., Verrier, C., Bodard, H., Friggi, A., Piquet, P., Moulin, G., and Bartoli, J. M., 1999, “Hemodynamics and Wall Mechanics After Stent Placement in Swine Iliac Arteries: Comparative Results From Six Stent Designs,” Radiology, 213 (1), pp. 229–246.
Stone, P. H., Coskun, A. U., Kinlay, S., Clark, M. E., Sonka, M., Wahle, A., Ilegbusi, O. J., Yeghiazarians, Y., Popma, J. J., Orav, J., Kuntz, R. E., and Feldman, C. L., 2003, “Effect of Endothelial Shear Stress on the Progression of Coronary Artery Disease, Vascular Remodeling, and In-Stent Restenosis in Humans—In Vivo 6-Month Follow-Up Study,” Circulation, 108 (4), pp. 438–444.
[CrossRef]Pache, J., Kastrati, A., Mehilli, J., Schuhlen, H., Dotzer, F., Hausleiter, J., Fleckenstein, M., Neumann, F. J., Sattelberger, U., Schmitt, C., Muller, M., Dirschinger, J., and Schomig, A., 2002, “Intracoronary Stenting and Angiographic Results: Strut Thickness Effect on Restenosis Outcome (Isar-Stereo-2) Trial,” Journal of the American College of Cardiology, 41 (8), pp. 1283–1288.
[CrossRef]Ojha, M., 1994, “Wall Shear-Stress Temporal Gradient and Anastomotic Intimal Hyperplasia,” Circ. Res., 74 (6), pp. 1227–1231.
Leask, R. L., Butany, J., Johnston, K. W., Ethier, C. R., and Ojha, M., 2005, “Human Saphenous Vein Coronary Artery Bypass Graft Morphology, Geometry and Hemodynamics,” Ann. Biomed. Eng., 33 (3), pp. 301–309.
[CrossRef]Fry, D. L., 1968, “Acute Vascular Endothelial Changes Associated With Increased Blood Velocity Gradients,” Circ. Res., 22 (2), pp. 165–197.
Baird, R. N., and Abbott, W. M., 1976, “Pulsatile Blood-Flow in Arterial Grafts,” Lancet, 308 (7992), pp. 948–950.
[CrossRef]Abbott, W. M., Megerman, J., Hasson, J. E., Litalien, G., and Warnock, D. F., 1987, “Effect of Compliance Mismatch on Vascular Graft Patency,” J. Vasc. Surg., 5 (2), pp. 376–382.
[CrossRef]Charonko, J. J., Ragab, S. A., and Vlachos, P. P., 2009, “A Scaling Parameter for Predicting Pressure Wave Reflection in Stented Arteries,” ASME J. Med. Devices, 3 (1), p. 011006.
[CrossRef]Charonko, J., Karri, S., Schmieg, J., Prabhu, S., and Vlachos, P., 2009, “In Vitro, Time-Resolved PIV Comparison of the Effect of Stent Design on Wall Shear Stress,” Ann. Biomed. Eng., 37 (7), pp. 1310–1321.
[CrossRef]Charonko, J., Karri, S., Schmieg, J., Prabhu, S., and Vlachos, P., 2010, “In Vitro Comparison of the Effect of Stent Configuration on Wall Shear Stress Using Time-Resolved Particle Image Velocimetry,” Ann. Biomed. Eng., 38 (3), pp. 889–902.
[CrossRef]LaDisa, J. F., Guler, I., Olson, L. E., Hettrick, D. A., Kersten, J. R., Warltier, D. C., and Pagel, P. S., 2003, “Three-Dimensional Computational Fluid Dynamics Modeling of Alterations in Coronary Wall Shear Stress Produced by Stent Implantation,” Ann. Biomed. Eng., 31 (8), pp. 972–980.
[CrossRef]LaDisa, J. F., Hettrick, D. A., Olson, L. E., Guler, I., Gross, E. R., Kress, T. T., Kersten, J. R., Warltier, D. C., and Pagel, P. S., 2002, “Stent Implantation Alters Coronary Artery Hemodynamics and Wall Shear Stress During Maximal Vasodilation,” J. Appl. Physiol., 93 (6), pp. 1939–1946.
LaDisa, J. F., Olson, L. E., Molthen, R. C., Hettrick, D. A., Pratt, P. F., Hardel, M. D., Kersten, J. R., Warltier, D. C., and Pagel, P. S., 2005, “Alterations in Wall Shear Stress Predict Sites of Neointimal Hyperplasia After Stent Implantation in Rabbit Iliac Arteries,” Am. J. Physiol. Heart Circ. Physiol., 288 (5), pp. H2465–H2475.
[CrossRef]Ladisa, J. F., Warltier, D. C., Olson, L. E., Kersten, J. R., and Pagel, P. S., 2003, “Shear-Modulated Neointimal Hyperplasia Following Stent Implantation,” FASEB J., 17 (4), p. A144.
[CrossRef]Berry, J. L., Santamarina, A., Moore, J. E., Roychowdhury, S., and Routh, W. D., 2000, “Experimental and Computational Flow Evaluation of Coronary Stents,” Ann. Biomed. Eng., 28 (4), pp. 386–398.
[CrossRef]Yazdani, S. K., Moore, J. E., Berry, J. L., and Vlachos, P. P., 2004, “DPIV Measurements of Flow Disturbances in Stented Artery Models: Adverse Affects of Compliance Mismatch,” ASME J. Biomech. Eng., 126 (5), pp. 559–566.
[CrossRef]Tafti, D. K., 2001, "Genidlest—A Scalable Parallel Computational Tool for Simulating Complex Turbulent Flows", American Society of Mechanical Engineers, New York, NY, Vol. 256 , pp. 347–356.
Gopalakrishnan, P., and Tafti, D. K., 2009, “A Parallel Boundary Fitted Dynamic Mesh Solver for Applications to Flapping Flight,” Comput. Fluids, 38 (8), pp. 1592–1607.
[CrossRef]Tafti, D. K., 2011, “Time-Accurate Techniques for Turbulent Heat Transfer Analysis in Complex Geometries,” "Advances in Computational Fluid Dynamics and Heat Transfer", WIT Press, Southampton, UK.
Čanić, S., Hartley, C. J., Rosenstrauch, D., Tambača, J., Guidoboni, G., and Mikelić, A., 2006, “Blood Flow in Compliant Arteries: An Effective Viscoelastic Reduced Model, Numerics, and Experimental Validation,” Ann. Biomed. Eng., 34 (4), pp. 575–592.
[CrossRef]Tezduyar, T. E., Sathe, S., Schwaab, M., and Conklin, B. S., 2008, “Arterial Fluid Mechanics Modeling With the Stabilized Space-Time Fluid-Structure Interaction Technique,” Int. J. Numer. Methods Fluids, 57 (5), pp. 601–629.
[CrossRef]Olufsen, M. S., Peskin, C. S., Kim, W. Y., Pedersen, E. M., Nadim, A., and Larsen, J., 2000, “Numerical Simulation and Experimental Validation of Blood Flow in Arteries With Structured-Tree Outflow Conditions,” Ann. Biomed. Eng., 28 (11), pp. 1281–1299.
[CrossRef]Čanić, S., and Kim, E. H., 2003, “Mathematical Analysis of the Quasilinear Effects in a Hyperbolic Model Blood Flow Through Compliant Axi-Symmetric Vessels,” Math. Methods Appl. Sci., 26 (14), pp. 1161–1186.
[CrossRef]Canic, S., Lamponi, D., Mikelic, A., and Tambaca, J., 2005, “Self-Consistent Effective Equations Modeling Blood Flow in Medium-to-Large Compliant Arteries,” Multiscale Model. Simul., 3 (3), pp. 559–596.
[CrossRef]Canic, S., and Mikelic, A., 2003, “Effective Equations Modeling the Flow of a Viscous Incompressible Fluid Through a Long Elastic Tube Arising in the Study of Blood Flow Through Small Arteries,” SIAM J. Appl. Dyn. Syst., 2 (3), pp. 431–463.
[CrossRef]Canic, S., Tambaca, J., Mikelic, A., Hartley, C. J., Mirkovic, D., Chavez, J., Rosenstrauch, D., and Ieee, 2004, "Blood Flow Through Axially Symmetric Sections of Compliant Vessels: New Effective Closed Models", IEEE, San Francisco, CA, pp. 3696–3699.
Mikelic, A., Guidoboni, G., and Canic, S., 2007, “Fluid-Structure Interaction in a Pre-Stressed Tube With Thick Elastic Walls I: The Stationary Stokes Problem,” Networks Heterog. Media, 2 (3), pp. 396–423.
Vernhet, H., Demaria, R., Perez-Martin, A., Juan, J. M., Oliva-Lauraire, M. C., Marty-Double, C., Senac, J. P., and Dauzat, M., 2003, “Wall Mechanics of the Stented Rabbit Aorta: Long-Term Study and Correlation With Histological Findings,” J. Endovasc. Ther., 10 (3), pp. 577–584.
[CrossRef]He, X. J., and Ku, D. N., 1996, “Pulsatile Flow in the Human Left Coronary Artery Bifurcation: Average Conditions,” ASME J. Biomech. Eng., 118 (1), pp. 74–82.
[CrossRef]Lighthill, M. J., 1963, "Laminar Boundary Layers", Dover, New York.
Patel, D. J., and Vaishnav, R. N. J. A., 1980, "Basic Hemodynamics and Its Role in Disease Processes", University Park Press, Baltimore, MD.
Giddens, D. P., Zarins, C. K., and Glagov, S., 1993, "The Role of Fluid-Mechanics in the Localization and Detection of Atherosclerosis", ASME, Breckenridge, CO, pp. 588–594.
Kamiya, A., and Togawa, T., 1980, “Adaptive Regulation of Wall Shear-Stress to Flow Change in the Canine Carotid-Artery,” Am. J. Physiol., 239 (1), pp. H14–H21.
Kamiya, A., Bukhari, R., and Togawa, T., 1984, “Adaptive Regulation of Wall Shear-Stress Optimizing Vascular Tree Function,” Bull. Math. Biol., 46 (1), pp. 127–137.
Lei, M., Kleinstreuer, C., and Truskey, G. A., 1995, “Numerical Investigation and Prediction of Atherogenic Sites in Branching Arteries,” ASME J. Biomech. Eng., 117 (3), pp. 350–357.
[CrossRef]Womersley, J. R., and Wright Air Development Center, 1957, “An Elastic Tube Theory of Pulse Transmission and Oscillatory Flow in Mammalian Arteries,” Wright Air Development Center (WADC), Technical Report No. 56-614.
Zamir, M., 2000, “The Physics of Pulsatile Flow,” "Biological Physics", Springer-Verlag, New York.