Mow, V. C., Kuei, S. C., Lai, W. M., and Armstrong, C. G., 1980, “Biphasic Creep and Stress Relaxation of Articular Cartilage in Compression: Theory and Experiments,” ASME J. Biomech. Eng., 102 , pp. 73–84.

Cohen, B., Lai, W. M., and Mow, V. C., 1998, “A Transversely Isotropic Biphasic Model for Unconfined Compression of Growth Plate and Chondroepiphysis,” ASME J. Biomech. Eng., 120 , pp. 491–496.

Soulhat, J., Buschmann, M. D., and Shirazi-Adl, A., 1999, “A Fibril-Network-Reinforced Biphasic Model of Cartilage in Unconfined Compression,” ASME J. Biomech. Eng., 121 , pp. 340–347.

Soltz, M. A., and Ateshian, G. A., 2000, “A Conewise Linear Elasticity Mixture Model for the Analysis of Tension-Compression Nonlinearity in Articular Cartilage,” ASME J. Biomech. Eng.

[CrossRef], 122 , pp. 576–586.

Bachrach, N. M., Mow, V. C., and Guilak, F., 1998, “Incompressibility of the Solid Matrix of Articular Cartilage Under High Hydrostatic Pressures,” J. Biomech.

[CrossRef], 31 , pp. 445–451.

Armstrong, C. G., Lai, W. M., and Mow, V. C., 1984, “An Analysis of the Unconfined Compression of Articular Cartilage,” ASME J. Biomech. Eng., 106 , pp. 165–173.

Brown, T. D., and Singerman, R. J., 1986, “Experimental Determination of the Linear Biphasic Constitutive Coefficients of Human Fetal Proximal Femoral Chondroepiphysis,” J. Biomech.

[CrossRef], 19 , pp. 597–605.

Mak, A. F., Lai, W. M., and Mow, V. C., 1987, “Biphasic Indentation of Articular Cartilage. I. Theoretical Analysis,” J. Biomech.

[CrossRef], 20 , pp. 703–714.

Ateshian, G. A., Lai, W. M., Zhu, W. B., and Mow, V. C., 1994, “An Asymptotic Solution for the Contact of Two Biphasic Cartilage Layers,” J. Biomech.

[CrossRef], 27 , pp. 1347–1360.

Armstrong, C. G., and Mow, V. C., 1982, “Variations in the Intrinsic Mechanical Properties of Human Articular Cartilage With Age, Degeneration, and Water Content,” J. Bone Jt. Surg., Am. Vol., 64 , pp. 88–94.

Chahine, N. O., Wang, C. C., Hung, C. T., and Ateshian, G. A., 2004, “Anisotropic Strain-Dependent Material Properties of Bovine Articular Cartilage in the Transitional Range From Tension to Compression,” J. Biomech.

[CrossRef], 37 , pp. 1251–1261.

Huang, C. Y., Stankiewicz, A., Ateshian, G. A., and Mow, V. C., 2005, “Anisotropy, Inhomogeneity, and Tension-Compression Nonlinearity of Human Glenohumeral Cartilage in Finite Deformation,” J. Biomech.

[CrossRef], 38 , pp. 799–809.

Kempson, G. E., Freeman, M. A., and Swanson, S. A., 1968, “Tensile Properties of Articular Cartilage,” Nature (London), 220 , pp. 1127–1128.

Hayes, W. C., Keer, L. M., Herrmann, G., and Mockros, L. F., 1972, “A Mathematical Analysis for Indentation Tests of Articular Cartilage,” J. Biomech.

[CrossRef], 5 , pp. 541–551.

Eberhardt, A. W., Keer, L. M., Lewis, J. L., and Vithoontien, V., 1990, “An Analytical Model of Joint Contact,” ASME J. Biomech. Eng., 112 , pp. 407–413.

Carter, D. R., and Beaupre, G. S., 1999, “Linear Elastic and Poroelastic Models of Cartilage Can Produce Comparable Stress Results: A Comment on Tanck Et Al. (J Biomech 32:153–161, 1999),” J. Biomech., 32 , pp. 1255–1257.

Wong, M., and Carter, D. R., 1990, “Theoretical Stress Analysis of Organ Culture Osteogenesis,” Bone (N.Y.), 11 , pp. 127–131.

Bowen, R. M., 1980, “Incompressible Porous Media Models by Use of the Theory of Mixtures,” Int. J. Eng. Sci.

[CrossRef], 18 , pp. 1129–1148.

Huyghe, J. M., and Janssen, J. D., 1997, “Quadriphasic Mechanics of Swelling Incompressible Porous Media,” Int. J. Eng. Sci.

[CrossRef], 35 , pp. 793–802.

Holmes, M. H., and Mow, V. C., 1990, “The Nonlinear Characteristics of Soft Gels and Hydrated Connective Tissues in Ultrafiltration,” J. Biomech.

[CrossRef], 23 , pp. 1145–1156.

Lai, W. M., and Mow, V. C., 1980, “Drag-Induced Compression of Articular Cartilage During a Permeation Experiment,” Biorheology, 17 , pp. 111–123.

Gu, W. Y., Yao, H., Huang, C. Y., and Cheung, H. S., 2003, “New Insight Into Deformation-Dependent Hydraulic Permeability of Gels and Cartilage, and Dynamic Behavior of Agarose Gels in Confined Compression,” J. Biomech.

[CrossRef], 36 , pp. 593–598.

Bonet, J., and Wood, R. D., 1997, "*Nonlinear Continuum Mechanics for Finite Element Analysis*", Cambridge University Press, Cambridge.

Simo, J. C., Taylor, R. L., and Pister, K. S., 1985, “Variational and Projection Methods for the Volume Constraint in Finite Deformation Elastoplasticity,” Comput. Methods Appl. Mech. Eng.

[CrossRef], 51 , pp. 177–208.

Weiss, J. A., Maker, B. N., and Govindjee, S., 1996, “Finite Element Implementation of Incompressible, Transversely Isotropic Hyperelasticity,” Comput. Methods Appl. Mech. Eng.

[CrossRef], 135 , pp. 107–128.

Curnier, A., He, Q. C., and Zysset, P., 1995, “Conewise Linear Elastic Materials,” J. Elast.

[CrossRef], 37 , pp. 1–38.

Quapp, K. M., and Weiss, J. A., 1998, “Material Characterization of Human Medial Collateral Ligament,” ASME J. Biomech. Eng., 120 , pp. 757–763.

Baer, A. E., Laursen, T. A., Guilak, F., and Setton, L. A., 2003, “The Micromechanical Environment of Intervertebral Disc Cells Determined by a Finite Deformation, Anisotropic, and Biphasic Finite Element Model,” ASME J. Biomech. Eng.

[CrossRef], 125 , pp. 1–11.

Lanir, Y., 1983, “Constitutive Equations for Fibrous Connective Tissues,” J. Biomech.

[CrossRef], 16 , pp. 1–12.

Lanir, Y., 1987, “Biorheology and Fluid Flux in Swelling Tissues, Ii. Analysis of Unconfined Compressive Response of Transversely Isotropic Cartilage Disc,” Biorheology, 24 , pp. 189–205.

Laasanen, M. S., Toyras, J., Korhonen, R. K., Rieppo, J., Saarakkala, S., Nieminen, M. T., Hirvonen, J., and Jurvelin, J. S., 2003, “Biomechanical Properties of Knee Articular Cartilage,” Biorheology, 40 , pp. 133–140.

Wayne, J. S., Woo, S. L., and Kwan, M. K., 1991, “Application of the U-P Finite Element Method to the Study of Articular Cartilage,” ASME J. Biomech. Eng., 113 , pp. 397–403.

Maker, B. N., Ferencz, R. M., and Hallquist, J. O., 1990, “Nike3D: A Nonlinear, Implicit, Three-Dimensional Finite Element Code for Solid and Structural Mechanics,” LLNL Technical Report No. UCRL-MA 105268.

Kelkar, R., and Ateshian, G. A., 1999, “Contact Creep of Biphasic Cartilage Layers,” ASME J. Appl. Mech., 66 , pp. 137–145.

Almeida, E. S., and Spilker, R. L., 1997, “Mixed and Penalty Finite Element Models for the Nonlinear Behavior of Biphasic Soft Tissues in Finite Deformation: Part I—Alternate Formulations,” Comput. Methods Biomech. Biomed. Eng., 1 , pp. 25–46.

Levenston, M. E., Frank, E. H., and Grodzinsky, A. J., 1998, “Variationally Derived 3-Field Finite Element Formulations for Quasistatic Poroelastic Analysis of Hydrated Biological Tissues,” Comput. Methods Appl. Mech. Eng.

[CrossRef], 156 , pp. 231–246.

Suh, J. K., and Spilker, R. L., 1991, “Penalty Finite Element Analysis for Non-Linear Mechanics of Biphasic Hydrated Soft Tissue Under Large Deformation,” Int. J. Numer. Methods Eng.

[CrossRef], 32 , pp. 1411–1439.

Diebels, S., and Ehlers, W., 1996, “Dynamic Analysis of a Fully Saturated Porous Medium Accounting for Geometrical and Material Non-Linearities,” Int. J. Numer. Methods Eng.

[CrossRef], 39 , pp. 81–97.

Simon, B. R., Kaufmann, M. V., McAfee, M. A., and Baldwin, A. L., 1993, “Finite Element Models for Arterial Wall Mechanics,” ASME J. Biomech. Eng., 115 , pp. 489–496.

Meng, X. N., LeRoux, M. A., Laursen, T. A., and Setton, L. A., 2002, “A Nonlinear Finite Element Formulation for Axisymmetric Torsion of Biphasic Materials,” Int. J. Solids Struct.

[CrossRef], 39 , pp. 879–895.