Viceconti, M., Bellingeri, L., Cristofolini, L., and Toni, A., 1998, “A Comparative Study on Different Methods of Automatic Mesh Generation of Human Femurs,” Med. Eng. Phys.
[CrossRef], 20 , pp. 1–10.
Taddei, F., Cristofolini, L., Martelli, S., Gill, H. S., and Viceconti, M., 2006, “Subject-Specific Finite Element Models of Long Bones: An In vitro Evolution of the Overall Accuracy,” J. Biomech., 39 (18), pp. 2457–2467.
Keaveny, T. M., Guo, E., Wachtel, E. F., McMahon, T. A., and Hayes, W. C., 1994, “Trabecular Bone Exhibits Fully Linear Elastic Behavior and Yields at Low Strains,” J. Biomech.
[CrossRef], 27 , pp. 1127–1136.
Cowin, S. C., and Ashby, M. F., 2001, "Bone Mechanics Handbook", CRC Press, Boca Raton, FL.
Lotz, J. C., Gerhart, T. N., and Hayes, W. C., 1991, “Mechanical Properties of Metaphyseal Bone in the Proximal Femur,” J. Biomech.
[CrossRef], 24 , pp. 317–329.
Lotz, J. C., Gerhart, T. N., and Hayes, W. C., 1990, “Mechanical Properties of Trabecular Bone from the Proximal Femur: A Quantitative CT Study,” J. Comput. Assist. Tomogr.
[CrossRef], 14 (1), pp. 107–114.
Wirtz, D. C., Schiffers, N., Pandorf, T., Radermacher, K., Weichert, D., and Forst, R., 2000, “Critical Evaluation of Known Bone Material Properties to Realize Anisotropic FE-Simulation of the Proximal Femur,” J. Biomech.
[CrossRef], 33 , pp. 1325–1330.
Morgan, E. F., Bayraktar, H. H., and Keaveny, T. M., 2003, “Trabecular Bone Modulus-Density Relationships Depend on Anatomic Site,” J. Biomech.
[CrossRef], 36 , pp. 897–904.
Keller, T. S., 1994, “Predicting the Compressive Mechanical Behavior of Bone,” J. Biomech.
[CrossRef], 27 , pp. 1159–1168.
Rho, J. Y., Hobatho, M. C., and Ashman, R. B., 1995, “Relations of Mechanical Properties to Density and CT Numbers in Human Bone,” Med. Eng. Phys.
[CrossRef], 17 , pp. 347–355.
Szabó, B. A., and Babuška, I., 1991, "Finite Element Analysis", Wiley, New York.
Mueller-Karger, C. M., Rank, E., and Cerrolaza, M., 2004, “p-Version of the Finite Element Method for Highly Heterogeneous Simulation of Human Bone,” Finite Elem. Anal. Design
[CrossRef], 40 , pp. 757–770.
Keyak, J. H., Rossi, S. A., Jones, K. A., and Skinner, H. B., 1998, “Prediction of Femoral Fracture Load Using Automated Finite Element Modeling,” J. Biomech.
[CrossRef], 31 , pp. 125–133.
Cody, D. D., Gross, G. J., Hou, F. J., Spencer, H. J., Goldstein, S. A., and Fyhrie, D. P., 1999, “Femoral Strength is Better Predicted by Finite Element Models than QCT and DXA,” J. Biomech.
[CrossRef], 32 , pp. 1013–1020.
Lotz, J. C., Cheal, E. J., and Hayes, W. C., 1991, “Fracture Prediction for the Proximal Femur Using Finite Element Models: Part 1—Linear Analysis,” J. Biomech. Eng., 113 , pp. 353–360.
Mertz, B., Niederer, P., Muller, R., and Ruegsegger, P., 1996, “Automated Finite Element Analysis of Excised Human Femura Based on Precision-QCT,” J. Biomech. Eng., 118 , pp. 387–390.
Wirtz, D. C., Pandorf, T., Portheine, F., Radermacher, K., Schiffers, N., Prescher, A., Weichert, D., and Firtz, U. N., 2003, “Concept and Development of an Orthotropic FE Model of the Proximal Femur, J. Biomech.
[CrossRef], 36 , pp. 289–293.
Couteau, B., Payan, Y., and Lavallee, S., 2000, “The Mesh-Matching Algorithm: An Automatic 3d Mesh Generator for Finite Element Structures,” J. Biomech.
[CrossRef], 33 , pp. 1005–1009.
Keyak, J. H., Meagher, J. M., Skinner, H. B., and Mote, C. D., 1990, “Automated Three-Dimensional Finite Element Modelling of Bone: A New Method,” J. Biomed. Eng.
[CrossRef], 12 , pp. 389–397.
Cody, D. D., McCubbrey, D. A., Divine, G. W., Gross, G. J., and Goldstein, S. A., 1996, “Predictive Value of Proximal Femural Bone Densiometry in Determining Local Orthogonal Material Properties,” J. Biomech.
[CrossRef], 29 , pp. 753–761.
Fox, J. C., Gupta, A., Blumenkrantz, G., Bayraktar, H. H., and Keaveny, T. M., 2004, “Role of Elastic Anisotropy and Failure Criterion in Femoral Fracture Strength Predictions,” "Trans. Orthopaedic Res. Soc. Conference Proceedings", p. 520.
Marom, A. S., and Linden, M. J., 1990, “Computer Aided Stress Analysis of Long Bones Utilizing Computed Tomography,” J. Biomech.
[CrossRef], 23 , pp. 399–404.
Viceconti, M., Davinelli, M., Taddei, F., and Cappello, A., 2004, “Automatic Generation of Accurate Subject-Specific Bone Finite Element Models to be Used in Clinical Studies,” J. Biomech.
[CrossRef], 37 , pp. 1597–1605.
Taddei, F., Pancanti, A., and Viceconti, M., 2004, “An Improved Method for the Automatic Mapping of Computed Tomography Numbers Onto Finite Element Models,” Med. Eng. Phys.
[CrossRef], 26 , pp. 61–69.
Zannoni, C., Mantovani, R., and Viceconti, M., 1998, “Material Properties Assignment to Finite Element Models of Bone Structure: A New Method,” Med. Eng. Phys.
[CrossRef], 20 , pp. 735–740.
Esses, S. I., Lotz, J. C., and Hayes, W. C., 1989, “Biomechanical Properties of the Proximal Femur Determined In Vitro by Single-Energy Quantitative Computed Tomography,” J. Bone Miner. Res., 4 , pp. 715–722.
Cody, D. D., Hou, F. J., Divine, G. W., and Fyhrie, D. P., 2000, “Short Term In Vivo Study of Proximal Femoral Finite Element Modeling,” Ann. Biomed. Eng.
[CrossRef], 28 , pp. 408–414.
Yang, G., Kabel, J., VanRiertbergen, B., Odgaard, A., Huiskes, R., and Cowin, S. C., 1999, “The Anisotropic Hooke’s Law for Cancellous Bone and Wood,” J. Elast.
[CrossRef], 53 , pp. 125–146.
Keyak, J. H., and Skinner, H. B., 1992, “Three-Dimensional Finite Element Modelling of Bone: Effect of Element Size,” J. Biomed. Eng.
[CrossRef], 14 , pp. 483–489.
Keyak, J. H., Fourkas, M. G., Meagher, J. M., and Skinner, H. B., 1993, “Validation of Automated Method of Three-Dimensional Finite Element Modelling of Bone,” J. Biomed. Eng.
[CrossRef], 15 , pp. 505–509.
Yeni, Y. N., and Fyhire, D. P., 2001, “Finite Element Calculated Uniaxial Apparent Stiffness is a Consistent Predictor of Uniaxial Apparent Strength in Human Vertebral Cancellous Bone Tested with Different Boundary Conditions,” J. Biomech.
[CrossRef], 34 (12), pp. 1649–1654.
Templeton, A., and Liebschner, M., 2004, “A Hierarchical Approach to Finite Element Modeling of the Human Spine,” Crit. Rev. Eukaryot Gene Expr, 14 (4), pp. 317–328.
Hernandez, C. J., Gupta, A., and Keaveny, T. M., 2006, “A Biomechanical Analysis of the Effects of Resorption Cavities on Cancellous Bone Strength,” J. Bone Miner. Res.
[CrossRef], 21 (8), pp. 1248–1255.
Kenney, J. F., and Keeping, E. S., 1962, "Mathematics of Statistics", Van Nostrand, New York.
Ayyub, B. M., and McCuen, R. H., 1996, "Numerical Methods for Engineers", Prentice Hall, Englewood Cliffs, NJ.
Padan, R., 2006, “Towards a Reliable Mechanical Simulation of the Proximal Femur,” M.Sc. thesis, Ben-Gurion University of the Negev, Beer-Sheva, Israel.
Rice, J. C., Cowin, S. C., and Bowman, J. A., 1988, “On the Dependence of the Elasticity and Strength of Cancellous Bone on Apparent Density,” J. Biomech.
[CrossRef], 21 , pp. 155–168.
Carter, D. R., and Hayes, W. C., 1977, “The Compressive Behavior of Bone as a Two-Phase Porous Structure,” J. Bone Jt. Surg., Am. Vol., 59 , pp. 954–962.
Ciarelli, M. J., Goldstein, S. A., Kuhn, J. L., Cody, D. D., and Brown, M. B., 1991, “Evaluation of Orthogonal Mechanical Properties and Density of Human Trabecular Bone From the Major Metaphyseal Regions With Materials Testing and Computed Tomography,” J. Orthop. Res.
[CrossRef], 9 , pp. 674–682.
Jensen, J. S., 1978, “A Photoelastic Study of a Model of the Proximal Femur. A Biomechanical Study of Unstable Trochanteric Fractures I,” Acta Orthop. Scand., 49 (1), pp. 54–59.
Fedida, R., Yosibash, Z., Milgrom, C., and Joscowicz, L., 2005, “Femur Mechanical Simulation Using High-Order FE Analysis With Continuous Mechanical Properties,” "Proceedings of ICCB05 - II International conference on computational bioengineering", Lisbon, Portugal, Vol. 1 , H.Rodrigueset al. , eds., IST Press, pp. 85–96.
Keyak, J. H., and Rossi, S. A., 2000, “Prediction of Femoral Fracture Load Using Finite Element Models: An Examination of Stress- and Strain-Based Failure Theories,” J. Biomech.
[CrossRef], 33 , pp. 209–214.