Castaneda-Zuniga, W. R., Formanek, A., Tadavarthy, M., Vlodaver, Z., Edwards, J. E., Zollikofer, C., and Amplatz, K., 1980, “The Mechanism of Balloon Angioplasty,” Radiology, 135 , pp. 565–571.

Humphrey, J. D., 2003, “Continuum Biomechanics of Soft Biological Tissues,” Proc. R. Soc. London, Ser. A, 459 , pp. 3–46.

Humphrey, J. D., and Canham, P. B., 2000, “Structure, Mechanical Properties, and Mechanics of Intracranial Saccular Aneurysms,” J. Elast.

[CrossRef], 61 , pp. 49–81.

Greenwald, S. E., and Berry, C. L., 2000, “Improving Vascular Grafts: The Importance of Mechanical and Hemodynamic Properties,” Sol. Energy, 190 (3), pp. 292–299.

Liu, S. Q., 1999, “Biomechanical Basis of Vascular Tissue Engineering,” Crit. Rev. Biomed. Eng., 27 (1–2), pp. 75–148.

Nerem, R. M., and Ensley, A. E., 2004, “The Tissue Engineering of Blood Vessels and the Hear,” American J. of Transplantation, 4 , pp. 36–42.

Holzapfel, G. A., Gasser, T. C., and Ogden, R. W., 2000, “A New Constitutive Framework for Arterial Wall Mechanics and a Comparative Study of Material Models,” J. Elast.

[CrossRef], 61 , pp. 1–48.

Humphrey, J. D., 1995, “Mechanics of the Arterial Wall: Review and Directions,” Crit. Rev. Biomed. Eng.

[CrossRef], 23 , pp. 1–162.

Humphrey, J. D., 2002, "*Cardiovascular Solid Mechanics. Cells, Tissues and Organs*", Springer-Verlag, New York.

von Maltzahn, W.-W., Besdo, D., and Wiemer, W., 1981, “Elastic Properties of Arteries: A Nonlinear Two-Layer Cylindrical Model,” J. Biomech.

[CrossRef], 14 , pp. 389–397.

Tözeren, A., 1984, “Elastic Properties of Arteries and Their Influence on the Cardiovascular System,” ASME J. Biomech. Eng., 106 , pp. 182–185.

Wuyts, F. L., Vanhuyse, V. J., Langewouters, G. J., Decraemer, W. F., Raman, E. R., and Buyle, S., 1995, “Elastic Properties of Human Aortas in Relation to Age and Atherosclerosis: A Structural Model,” Phys. Med. Biol., 40 , pp. 1577–1597.

Demiray, H., 1991, “A Layered Cylindrical Shell Model for an Aorta,” Int. J. Eng. Sci.

[CrossRef], 29 , pp. 47–54.

Rachev, A., 1997, “Theoretical Study of the Effect of Stress-Dependent Remodeling on Arterial Geometry Under Hypertensive Conditions,” J. Biomech.

[CrossRef], 30 , pp. 819–827.

Leukart, M., and Ekkehard, R., 2003, “A Comparison of Damage Models Formulated on Different Material Scales,” Comput. Mater. Sci.

[CrossRef], 28 (3–4), pp. 749–762.

Brocca, M., and Bažant, Z. P., 2000, “Microplane Constitutive Model and Metal Plasticity,” Appl. Mech. Rev., 53 (10), pp. 265–281.

Carol, I., and Bažant, Z. P., 1997, “Damage and Plasticity in Microplane Theory,” Int. J. Solids Struct.

[CrossRef], 34 (29), pp. 3807–3835.

Caner, F. C., Bažant, Z. P., and Červenka, J., 2002, “Vertex Effect in Strain-Softening Concrete at Rotating Principal Axes,” J. Eng. Mech. Div., Am. Soc. Civ. Eng., 128 (1), pp. 24–33.

de Borst, R., 2002, “Fracture in Quasi-Brittle Materials: A Review of Continuum Damage-Based Approaches,” Eng. Fract. Mech., 69 (2), pp. 95–112.

Bažant, Z. P., Caner, F. C., Carol, I., Adley, M. D., and Akers, S. A., 2000, “Microplane Model m4 for Concrete. I: Formulation With Work-Conjugate Deviatoric Stress,” J. Eng. Mech. Div., Am. Soc. Civ. Eng., 126 (9), pp. 944–953.

Caner, F. C., and Bažant, Z. P., 2000, “Microplane Model m4 for Concrete. II: Algorithm and Calibration,” J. Eng. Mech. Div., Am. Soc. Civ. Eng., 126 (9), pp. 954–961.

Bažant, Z. P., and Zi, G.-S., 2003, “Microplane Constitutive Model for Porous Isotropic Rocks,” J. Geophys. Res., [Solid Earth], 108 , B2(2119).

Brocca, M., Bažant, Z. P., and Daniel, I. M., 2001, “Microplane Model for Stiff Foams and Finite Element Analysis of Sandwich Failure by Core Indentation,” Int. J. Solids Struct.

[CrossRef], 38 (44–45), pp. 8111–8132.

Brocca, M., Brinson, L. C., and Bažant, Z. P., 2002, “Three-Dimensional Constitutive Model for Shape Memory Alloys Based on Microplane Model,” J. Mech. Phys. Solids, 50 (5), pp. 1051–1077.

Carol, I., Jirásek, M., and Bažant, Z. P., 2001, “A Thermodynamically Consistent Approach to Microplane Theory. Part I. Free Energy and Consistent Microplane Stress,” Int. J. Solids Struct.

[CrossRef], 38 (17), pp. 2921–2931.

Carol, I., Jirásek, M., and Bažant, Z. P., 2004, “A Framework for Microplane Models at Large Strain, With Application to Hyperelasticity,” Int. J. Solids Struct.

[CrossRef], 41 (2), pp. 511–557.

Belytschko, T., Liu, W., and Moran, B., 2004, "*Nonlinear Finite Elements for Continua and Structures*", Wiley, New York.

Ogden, R. W., 1976, “Volume Changes Associated With the Deformation of Rubber-Like Solids,” J. Mech. Phys. Solids, 24 , pp. 323–338.

Cescotto, S., and Fonder, G., 1979, “A Finite Element Approach for Large Strains of Nearly Incompressible Rubber-Like Materials,” Int. J. Solids Struct.

[CrossRef], 15 , pp. 589–605.

Eussman, T., and Bathe, K., 1987, “A Finite Element Formulation for Nonlinear Incompressible Elastic and Inelastic Analysis,” Comput. Struct.

[CrossRef], 26 , pp. 357–409.

Oakley, D. R., and Knight, N. F., 1995, “Adaptive Dynamic Relaxation Algorithm for Nonlinear Hyperelastic Structures Part I. Formulation,” Comput. Methods Appl. Mech. Eng.

[CrossRef], 126 , pp. 67–89.

Gasser, T. C., and Holzapfel, G. A., 2002, “A Rate-Independent Elastoplastic Constitutive Model for Biological Fiber-Reinforced Composites at Finite Strains: Continuum Basis, Algorithmic Formulation and Finite Element Implementation,” Comput. Mech.

[CrossRef], 29 , pp. 340–360.

Ogden, R. W., 1984, "*Non-linear Elastic Deformations*", Wiley, New York.

Sacks, M. S., 2003, “Incorporation of Experimentally Derived Fiber Orientation Into a Structural Constitutive Model for Planar Collagenous Tissues,” ASME J. Biomech. Eng.

[CrossRef], 125 , pp. 280–287.

Bažant, Z. P., 2005 (Private communication).

Holzapfel, G. A., 2003, “Structural and Numerical Models for the (Visco)Elastic Response of Arterial Walls and Residual Stresses,” in "*Biomechanics of Soft Tissue in Cardiovascular Systems*", G.A.Holzapfel and R.W.Ogden, eds. Springer, Wien, pp. 109–184.

Stroud, A. H., 1971, "*Approximate Calculation of Multiple Integrals*". Prentice-Hall, Englewood Cliffs, NJ.

Bažant, Z. P., and Oh, B.-H., 1986, “Efficient Numerical Integration on the Surface of a Sphere,” Z. Angew. Math. Mech., 66 (1), pp. 37–49.

Kulkarni, M., Belytschko, T., and Bayliss, A., 1995, “Stability and Error Analysis for Time Integrators Applied to Strain-Softening Materials,” Comput. Methods Appl. Mech. Eng.

[CrossRef], 124 , pp. 335–363.

Wood, W. L., 1967, “Comparison of Dynamic Relaxation With Three Other Iterative Methods,” Engineer (London), 224 , pp. 683–687.

Metzger, D. R., 2003, “Adaptive Damping for Dynamic Relaxation Problems With Non-Monotonic Spectral Response,” Int. J. Numer. Methods Eng., 56 , pp. 57–80.

Gradshteyn, I. S., and Ryzhik, I. M., 2000, "*Table of Integrals, Series and Products*", 6th ed., Academic Press, San Diego, CA.

Simo, J. C., and Taylor, R. L., 1991, “Quasi-Incompressible Finite Elasticity in Principal Stretches. Continuum Basis and Numerical Algorithms,” Comput. Methods Appl. Mech. Eng.

[CrossRef], 85 , pp. 273–310.

Stergiopulos, N., Vulliémoz, S., Rachev, A., Meister, J.-J., and Greenwald, S. E., 2001, “Assessing the Homogeneity of the Elastic Properties and Composition of the Pig Aortic Media,” J. Vasc. Res.

[CrossRef], 38 , pp. 237–246.

Standley, P. R., Camaratta, A., Nolan, B. P., Purgason, C. T., and Stanley, M. A., 2002, “Cyclic Stretch Induces Vascular Smooth Muscle Cell Alignment Via NO Signaling,” Am. J. Physiol. Heart Circ. Physiol., 283 , pp. H1907-H1914.

Boerboom, R., Driessen, N., Bouten, C. V. C., Huyghe, J. M., and Baaijens, F. P. T., 2003, “Finite Element Model of Mechanically Induced Collagen Fiber Synthesis and Degradation in the Aortic Valve,” Ann. Biomed. Eng.

[CrossRef], 31 (9), pp. 1040–1053.

Wagenseil, J. E., Elson, E. L., and Okamoto, R. J., 2004, “Cell Orientation Influences the Biaxial Mechanical Properties of Fibroblast Populated Collagen Vessels,” Ann. Biomed. Eng.

[CrossRef], 32 (5), pp. 720–731.

Wang, J. H., Jia, F., Gilbert, T. W., and Woo, S. L., 2003, “Cell Orientation Determines the Alignment of Cell-Produced Collagenous Matrix,” J. Biomech.

[CrossRef], 36 (1), pp. 97–102.