Hsieh, A. H., and Lotz, J. C., 2003, “Prolonged Spinal Loading Induces Matrix Metalloproteinase-2 Activation in Intervertebral Discs,” Spine, 28 (16), pp. 1781–1788.
Lotz, J. C., Colliou, O. K., Chin, J. R., Duncan, N. A., and Liebenberg, E., 1998, “Compression-Induced Degeneration of the Intervertebral Disc: An in Vivo Mouse Model and Finite-Element Study,” Spine
[CrossRef], 23 (23), pp. 2493–2506.
Lotz, J. C., and Chin, J. R., 2000, “Intervertebral Disc Cell Death is Dependent on the Magnitude and Duration of Spinal Loading,” Spine, 25 (12), pp. 1477–1483.
Issever, A. S., Walsh, A., Lu, Y., Burghardt, A., Lotz, J. C., and Majumdar, S., 2003, “Micro-Computed Tomography Evaluation of Trabecular Bone Structure on Loaded Mice Tail Vertebrae,” Spine, 28 (2), pp. 123–128.
Hsieh, A. H., Edwards, W. T., and Lotz, J. C., 2002, “Spinal Bending Induces Altered Annular Matrix Stress and Fluid Pressure Distribution,” 29th Annual Meeting of the International Society for the Study of the Lumbar Spine , pp. 160.
Court, C., Colliou, O. K., Chin, J. R., Liebenberg, E., Bradford, D. S., and Lotz, J. C., 2001, “The Effect of Static in Vivo Bending on the Murine Intervertebral Disc,” Spine, 1 (4), pp. 239–245.
Walsh, A. J., and Lotz, J. C., 2004, “Biological Response of the Intervertebral Disc to Dynamic Loading,” J. Biomech., 37 (3), pp. 329–337.
Stokes, I. A., Mente, P. L., Iatridis, J. C., Farnum, C. E., and Aronsson, D. D., 2002, “Enlargement of Growth Plate Chondrocytes Modulated by Sustained Mechanical Loading,” J. Bone Jt. Surg., Am. Vol., 84-A (10), pp. 1842–1848.
Stokes, I. A., Aronsson, D. D., Spence, H., and Iatridis, J. C., 1998, “Mechanical Modulation of Intervertebral Disc Thickness in Growing Rat Tails,” J. Spinal Disord., 11 (3), pp. 261–265.
Hutton, W. C., Yoon, S. T., Elmer, W. A., Li, J., Murakami, H., Minamide, A., and Akamaru, T., 2002, “Effect of Tail Suspension (or Simulated Weightlessness) on the Lumbar Intervertebral Disc: Study of Proteoglycans and Collagen,” Spine, 27 (12), pp. 1286–1290.
Iatridis, J. C., Mente, P. L., Stokes, I. A., Aronsson, D. D., and Alini, M., 1999, “Compression-Induced Changes in Intervertebral Disc Properties in a Rat Tail Model,” Spine
[CrossRef], 24 (10), pp. 996–1002.
MacLean, J. J., Lee, C. R., Grad, S., Ito, K., Alini, M., and Iatridis, J. C., 2003, “Effects of Immobilization and Dynamic Compression on Intervertebral Disc Cell Gene Expression in Vivo,” Spine, 28 (10), pp. 973–981.
Mente, P. L., Stokes, I. A., Spence, H., and Aronsson, D. D., 1997, “Progression of Vertebral Wedging in an Asymmetrically Loaded Rat Tail Model,” Spine, 22 (12), pp. 1292–1296.
Mente, P. L., Aronsson, D. D., Stokes, I. A., and Iatridis, J. C., 1999, “Mechanical Modulation of Growth for the Correction of Vertebral Wedge Deformities,” J. Orthop. Res., 17 (4), pp. 518–524.
Pazzaglia, U. E., Andrini, L., and Di Nucci, A., 1997, “The Effects of Mechanical Forces on Bones and Joints. Experimental Study on the Rat Tail,” J. Bone Jt. Surg., Br. Vol., 79-B (6), pp. 1024–1030.
Maclean, J. J., Lee, C. R., Alini, M., and Iatridis, J. C., 2004, “Anabolic and Catabolic mRNA Levels of the Intervertebral Disc Vary With the Magnitude and Frequency of in Vivo Dynamic Compression,” J. Orthop. Res., 22 (6), pp. 1193–1200.
Ching, C. T., Chow, D. H., Yao, F. Y., and Holmes, A. D., 2003, “The Effect of Cyclic Compression on the Mechanical Properties of the Inter-Vertebral Disc: An in Vivo Study in a Rat Tail Model,” Clin. Biomech. (Bristol, Avon), 18 (3), pp. 182–189.
Ching, C. T., Chow, D. H., Yao, F. Y., and Holmes, A. D., 2004, “Changes in Nuclear Composition Following Cyclic Compression of the Intervertebral Disc in an in Vivo Rat-Tail Model,” Med. Eng. Phys., 26 (7), pp. 587–594.
Cassidy, J. J., Silverstein, M. S., Hiltner, A., and Baer, E., 1990, “A Water Transport Model for the Creep Response of the Intervertebral Disc,” J. Mater. Sci.: Mater. Med., 1 (2), pp. 81–89.
Natarajan, R. N., and Andersson, G. B., 1999, “The Influence of Lumbar Disc Height and Cross-Sectional Area on the Mechanical Response of the Disc to Physiologic Loading,” Spine
[CrossRef], 24 (18), pp. 1873–1881.
Kumaresan, S., Yoganandan, N., Pintar, F. A., Maiman, D. J., and Goel, V. K., 2001, “Contribution of Disc Degeneration to Osteophyte Formation in the Cervical Spine: A Biomechanical Investigation,” J. Orthop. Res.
[CrossRef], 19 (5), pp. 977–984.
Spilker, R. L., Jakobs, D. M., and Schultz, A. B., 1986, “Material Constants for a Finite Element Model of the Intervertebral Disk With a Fiber Composite Annulus,” J. Biomech. Eng., 108 (1), pp. 1–11.
Wang, J. L., Parnianpour, M., Shirazi-Adl, A., and Engin, A. E., 2000, “Viscoelastic Finite-Element Analysis of a Lumbar Motion Segment in Combined Compression and Sagittal Flexion. Effect of Loading Rate,” Spine, 25 (3), pp. 310–318.
Lu, Y. M., Hutton, W. C., and Gharpuray, V. M., 1998, “The Effect of Fluid Loss on the Viscoelastic Behavior of the Lumbar Intervertebral Disc in Compression,” ASME J. Biomech. Eng., 120 (1), pp. 48–54.
Kasra, M., Shirazi-Adl, A., and Drouin, G., 1992, “Dynamics of Human Lumbar Intervertebral Joints. Experimental and Finite-Element Investigations,” Spine, 17 (1), pp. 93–102.
Argoubi, M., and Shirazi-Adl, A., 1996, “Poroelastic Creep Response Analysis of a Lumbar Motion Segment in Compression,” J. Biomech.
[CrossRef], 29 (10), pp. 1331–1339.
Shirazi-Adl, A., Ahmed, A. M., and Shrivastava, S. C., 1986, “A Finite Element Study of a Lumbar Motion Segment Subjected to Pure Sagittal Plane Moments,” J. Biomech.
[CrossRef], 19 (4), pp. 331–350.
Elliott, D. M., and Sarver, J. J., 2004, “Young Investigator Award Winner: Validation of the Mouse and Rat Disc as Mechanical Models of the Human Lumbar Disc,” Spine, 29 (7), pp. 713–722.
Ferguson, S. J., Ito, K., and Nolte, L. P., 2004, “Fluid Flow and Convective Transport of Solutes Within the Intervertebral Disc,” J. Biomech., 37 (2), pp. 213–221.
Iatridis, J. C., Laible, J. P., and Krag, M. H., 2003, “Influence of Fixed Charge Density Magnitude and Distribution on the Intervertebral Disc: Applications of a Poroelastic and Chemical Electric (Peace) Model,” ASME J. Biomech. Eng.
[CrossRef], 125 (1), pp. 12–24.
Cheung, J. T., Zhang, M., and Chow, D. H., 2003, “Biomechanical Responses of the Intervertebral Joints to Static and Vibrational Loading: A Finite Element Study,” Clin. Biomech. (Bristol, Avon), 18 (9), pp. 790–799.
Laible, J. P., Pflaster, D. S., Krag, M. H., Simon, B. R., and Haugh, L. D., 1993, “A Poroelastic-Swelling Finite Element Model With Application to the Intervertebral Disc,” Spine, 18 (5), pp. 659–670.
Lee, C. K., Kim, Y. E., Lee, C. S., Hong, Y. M., Jung, J. M., and Goel, V. K., 2000, “Impact Response of the Intervertebral Disc in a Finite-Element Model,” Spine
[CrossRef], 25 (19), pp. 2431–2439.
Lee, K. K., and Teo, E. C., 2004, “Poroelastic Analysis of Lumbar Spinal Stability in Combined Compression and Anterior Shear,” J. Spinal Disord. Tech., 17 (5), pp. 429–438.
Martinez, J. B., Oloyede, V. O., and Broom, N. D., 1997, “Biomechanics of Load-Bearing of the Intervertebral Disc: An Experimental and Finite Element Model,” Med. Eng. Phys., 19 (2), pp. 145–156.
Simon, B. R., Wu, J. S., Carlton, M. W., Evans, J. H., and Kazarian, L. E., 1985, “Structural Models for Human Spinal Motion Segments Based on a Poroelastic View of the Intervertebral Disk,” ASME J. Biomech. Eng., 107 (4), pp. 327–335.
Simon, B. R., Wu, J. S., Carlton, M. W., Kazarian, L. E., France, E. P., Evans, J. H., and Zienkiewicz, O. C., 1985, “Poroelastic Dynamic Structural Models of Rhesus Spinal Motion Segments,” Spine, 10 (6), pp. 494–507.
Wu, J. S., and Chen, J. H., 1996, “Clarification of the Mechanical Behaviour of Spinal Motion Segments Through a Three-Dimensional Poroelastic Mixed Finite Element Model,” Med. Eng. Phys., 18 (3), pp. 215–224.
Duncan, N. A., and Lotz, J. C., 1998, “Experimental Validation of a Porohyperelastic Finite Element Model of the Annulus Fibrosus,” "Computer Methods in Biomechanics & Biomedical Engineering", J.Middleton, M.L.Jones, and G.N.Pande, eds., Gordon and Breach, New York.
Colliou, O. K., 1998, “Role of Mechanical Loading in Intervertebral Disc Degeneration,” Ph.D. thesis, University of California—Berkeley, Berkeley, CA.
Sun, D. D., and Leong, K. W., 2004, “A Nonlinear Hyperelastic Mixture Theory Model for Anisotropy, Transport, and Swelling of Annulus Fibrosus,” Ann. Biomed. Eng.
[CrossRef], 32 (1), pp. 92–102.
Biot, M. A., 1941, “General Theory of Three-Dimensional Consolidation,” J. Appl. Phys.
[CrossRef], 12 (2), pp. 155–164.
Mow, V. C., Kuei, S. C., Lai, W. M., and Armstrong, C. G., 1980, “Biphasic Creep and Stress Relaxation of Articular Cartilage in Compression? Theory and Experiments,” ASME J. Biomech. Eng., 102 (1), pp. 73–84.
Huang, C. Y., Soltz, M. A., Kopacz, M., Mow, V. C., and Ateshian, G. A., 2003, “Experimental Verification of the Roles of Intrinsic Matrix Viscoelasticity and Tension-Compression Nonlinearity in the Biphasic Response of Cartilage,” ASME J. Biomech. Eng.
[CrossRef], 125 (1), pp. 84–93.
Sun, D. D., Guo, X. E., Likhitpanichkul, M., Lai, W. M., and Mow, V. C., 2004, “The Influence of the Fixed Negative Charges on Mechanical and Electrical Behaviors of Articular Cartilage Under Unconfined Compression,” ASME J. Biomech. Eng.
[CrossRef], 126 (1), pp. 6–16.
Atkinson, T. S., Haut, R. C., and Altiero, N. J., 1997, “A Poroelastic Model That Predicts Some Phenomenological Responses of Ligaments and Tendons,” ASME J. Biomech. Eng., 119 (4), pp. 400–405.
Beek, M., Koolstra, J. H., and van Eijden, T. M., 2003, “Human Temporomandibular Joint Disc Cartilage as a Poroelastic Material,” Clin. Biomech. (Bristol, Avon)
[CrossRef], 18 (1), pp. 69–76.
Beilin, V., Ito, K., and Pande, G. N., 2003, “The Effect of Roughness on Biophysical Stimuli at the Bone-Cartilage Interface,” J. Biomech., 36 (9), pp. 1381–1385.
Korhonen, R. K., Laasanen, M. S., Toyras, J., Lappalainen, R., Helminen, H. J., and Jurvelin, J. S., 2003, “Fibril Reinforced Poroelastic Model Predicts Specifically Mechanical Behavior of Normal, Proteoglycan Depleted and Collagen Degraded Articular Cartilage,” J. Biomech.
[CrossRef], 36 (9), pp. 1373–1379.
Lacroix, D., and Prendergast, P. J., 2002, “A Mechano-Regulation Model for Tissue Differentiation During Fracture Healing: Analysis of Gap Size and Loading,” J. Biomech., 35 (9), pp. 1163–1171.
Li, L., Shirazi-Adl, A., and Buschmann, M. D., 2003, “Investigation of Mechanical Behavior of Articular Cartilage by Fibril Reinforced Poroelastic Models,” Biorheology, 40 (1–3), pp. 227–233.
Manfredini, P., Cocchetti, G., Maier, G., Redaelli, A., and Montevecchi, F. M., 1999, “Poroelastic Finite Element Analysis of a Bone Specimen Under Cyclic Loading,” J. Biomech., 32 (2), pp. 135–144.
Morel, V., and Quinn, T. M., 2004, “Short-Term Changes in Cell and Matrix Damage Following Mechanical Injury of Articular Cartilage Explants and Modelling of Microphysical Mediators,” Biorheology, 41 (3–4), pp. 509–519.
Simon, B. R., Liable, J. P., Pflaster, D., Yuan, Y., and Krag, M. H., 1996, “A Poroelastic Finite Element Formulation Including Transport and Swelling in Soft Tissue Structures,” ASME J. Biomech. Eng., 118 (1), pp. 1–9.
Smith, C. L., and Mansour, J. M., 2000, “Indentation of an Osteochondral Repair: Sensitivity to Experimental Variables and Boundary Conditions,” J. Biomech., 33 (11), pp. 1507–1511.
Steck, R., Niederer, P., and Knothe Tate, M. L., 2003, “A Finite Element Analysis for the Prediction of Load-Induced Fluid Flow and Mechanochemical Transduction in Bone,” J. Theor. Biol., 220 (2), pp. 249–259.
Tanck, E., van Driel, W. D., Hagen, J. W., Burger, E. H., Blankevoort, L., and Huiskes, R., 1999, “Why Does Intermittent Hydrostatic Pressure Enhance the Mineralization Process in Fetal Cartilage?” J. Biomech., 32 (2), pp. 153–161.
van Driel, W. D., van Leeuwen, E. J., Von den Hoff, J. W., Maltha, J. C., and Kuijpers-Jagtman, A. M., 2000, “Time-Dependent Mechanical Behaviour of the Periodontal Ligament,” Proc. Inst. Mech. Eng., Part H: J. Eng. Med., 214 (5), pp. 497–504.
Whyne, C. M., Hu, S. S., and Lotz, J. C., 2003, “Burst Fracture in the Metastatically Involved Spine: Development, Validation, and Parametric Analysis of a Three-Dimensional Poroelastic Finite-Element Model,” Spine, 28 (7), pp. 652–660.
Wren, T. A., Beaupré, G. S., and Carter, D. R., 1998, “A Model for Loading-Dependent Growth, Development, and Adaptation of Tendons and Ligaments,” J. Biomech.
[CrossRef], 31 (2), pp. 107–114.
Hall, B. K., 1986, “The Role of Movement and Tissue Interactions in the Development and Growth of Bone and Secondary Cartilage in the Clavicle of the Embryonic Chick,” J. Embryol. Exp. Morphol., 93 (2), pp. 133–152.
Iatridis, J. C., Setton, L. A., Foster, R. J., Rawlins, B. A., Weidenbaum, M., and Mow, V. C., 1998, “Degeneration Affects the Anisotropic and Nonlinear Behaviors of Human Anulus Fibrosus in Compression,” J. Biomech.
[CrossRef], 31 (6), pp. 535–544.
Stevens, R. L., Ryvar, R., Robertson, W. R., O’Brien, J. P., and Beard, H. K., 1982, “Biological Changes in the Annulus Fibrosus in Patients With Low-Back Pain,” Spine, 7 (3), pp. 223–233.
Ebara, S., Iatridis, J. C., Setton, L. A., Foster, R. J., Mow, V. C., and Weidenbaum, M., 1996, “Tensile Properties of Nondegenerate Human Lumbar Anulus Fibrosus,” Spine
[CrossRef], 21 (4), pp. 452–461.
Skaggs, D. L., Warden, W. H., and Mow, V. C., 1994, “Radial Tie Fibers Influence the Tensile Properties of the Bovine Medial Meniscus,” J. Orthop. Res.
[CrossRef], 12 (2), pp. 176–185.
Iatridis, J. C., Kumar, S., Foster, R. J., Weidenbaum, M., and Mow, V. C., 1999, “Shear Mechanical Properties of Human Lumbar Annulus Fibrosus,” J. Orthop. Res.
[CrossRef], 17 (5), pp. 732–737.
Setton, L. A., Zhu, W., Weidenbaum, M., Ratcliffe, A., and Mow, V. C., 1993, “Compressive Properties of the Cartilaginous End-Plate of the Baboon Lumbar Spine,” J. Orthop. Res.
[CrossRef], 11 (2), pp. 228–239.
Iatridis, J. C., Setton, L. A., Weidenbaum, M., and Mow, V. C., 1997, “Alterations in the Mechanical Behavior of the Human Lumbar Nucleus Pulposus With Degeneration and Aging,” J. Orthop. Res.
[CrossRef], 15 (2), pp. 318–322.
Elliott, D. M., Robinson, P. S., Gimbel, J. A., Sarver, J. J., Abboud, J. A., Iozzo, R. V., and Soslowsky, L. J., 2003, “Effect of Altered Matrix Proteins on Quasilinear Viscoelastic Properties in Transgenic Mouse Tail Tendons,” Ann. Biomed. Eng.
[CrossRef], 31 (5), pp. 599–605.
Gimbel, J. A., Robinson, P. S., Abboud, J. A., Elliott, D. M., Iozzo, R. V., and Soslowsky, L. J., 2002, “Determining the Source of Elasticity and Viscoelasticity in Transgenic Mouse Tendon Fascicles,” Trans. of the 48th Annual Meeting of the Orthopaedic Research Society , p. 603.
Silva, M. J., Keaveny, T. M., and Hayes, W. C., 1997, “Load Sharing Between the Shell and Centrum in the Lumbar Vertebral Body,” Spine
[CrossRef], 22 (2), pp. 140–150.
Whyne, C. M., Hu, S. S., Klisch, S., and Lotz, J. C., 1998, “Effect of the Pedicle and Posterior Arch on Vertebral Body Strength Predictions in Finite Element Modeling,” Spine, 23 (8), pp. 899–907.
Johnstone, B., Urban, J. P., Roberts, S., and Menage, J., 1992, “The Fluid Content of the Human Intervertebral Disc. Comparison Between Fluid Content and Swelling Pressure Profiles of Discs Removed at Surgery and Those Taken Postmortem,” Spine, 17 (4), pp. 412–416.
Maroudas, A., Bayliss, M. T., and Venn, M. F., 1980, “Further Studies on the Composition of Human Femoral Head Cartilage,” Ann. Rheum. Dis., 39 (5), pp. 514–523.
Urban, J. P., and Maroudas, A., 1981, “Swelling of the Intervertebral Disc in Vitro,” Connect. Tissue Res., 9 (1), pp. 1–10.
Fujita, Y., Wagner, D. R., Biviji, A. A., Duncan, N. A., and Lotz, J. C., 2000, “Anisotropic Shear Behavior of the Annulus Fibrosus: Effect of Harvest Site and Tissue Prestrain,” Med. Eng. Phys.
[CrossRef], 22 (5), pp. 349–357.
Morgan, E. F., and Keaveny, T. M., 2001, “Dependence of Yield Strain of Human Trabecular Bone on Anatomic Site,” J. Biomech.
[CrossRef], 34 (5), pp. 569–577.
Grant, J. P., Oxland, T. R., and Dvorak, M. F., 2001, “Mapping the Structural Properties of the Lumbosacral Vertebral Endplates,” Spine, 26 (8), pp. 889–896.
Palmer, E. I., and Lotz, J. C., 2004, “The Compressive Creep Properties of Normal and Degenerated Murine Intervertebral Discs,” J. Orthop. Res., 22 (1), pp. 164–169.
Carter, D. R., Beaupre, G. S., Giori, N. J., and Helms, J. A., 1998, “Mechanobiology of Skeletal Regeneration,” Clin. Orthop. Relat. Res., 355 (Suppl), pp. S41–55.
Iverson, E. P., and Lotz, J. C., 2003, “The Effects of Tissue Level Forces on the Cells of the Intervertebral Disc,” 30th Annual Meeting of the International Society for the Study of the Lumbar Spine, pp. 264.
Kumaresan, S., Yoganandan, N., and Pintar, F. A., 1999, “Finite Element Analysis of the Cervical Spine: A Material Property Sensitivity Study,” Clin. Biomech. (Bristol, Avon), 14 (1), pp. 41–53.
Yoganandan, N., Kumaresan, S., Voo, L., and Pintar, F. A., 1997, “Finite Element Model of the Human Lower Cervical Spine: Parametric Analysis of the C4-C6 Unit,” ASME J. Biomech. Eng., 119 (1), pp. 87–92.
Rao, A. A., and Dumas, G. A., 1991, “Influence of Material Properties on the Mechanical Behaviour of the L5-S1 Intervertebral Disc in Compression: A Nonlinear Finite Element Study,” J. Biomed. Eng., 13 (2), pp. 139–151.
Ohshima, H., Tsuji, H., Hirano, N., Ishihara, H., Katoh, Y., and Yamada, H., 1989, “Water Diffusion Pathway, Swelling Pressure, and Biomechanical Properties of the Intervertebral Disc During Compression Load,” Spine, 14 (11), pp. 1234–1244.
Ogata, Y., Itoh, Y., and Nagase, H., 1995, “Steps Involved in Activation of the Pro-Matrix Metalloproteinase 9 (Progelatinase B)-Tissue Inhibitor of Metalloproteinases-1 Complex by 4-Aminophenylmercuric Acetate and Proteinases,” J. Biol. Chem., 270 (31), pp. 18506–18511.
Ayotte, D. C., Ito, K., Perren, S. M., and Tepic, S., 2000, “Direction-Dependent Constriction Flow in a Poroelastic Solid: The Intervertebral Disc Valve,” ASME J. Biomech. Eng.
[CrossRef], 122 (6), pp. 587–593.
Roberts, S., Urban, J. P., Evans, H., and Eisenstein, S. M., 1996, “Transport Properties of the Human Cartilage Endplate in Relation to its Composition and Calcification,” Spine, 21 (4), pp. 415–420.
Gruber, H. E., and Hanley, E. N., 2002, “Ultrastructure of the Human Intervertebral Disc During Aging and Degeneration: Comparison of Surgical and Control Specimens,” Spine, 27 (8), pp. 798–805.
Berlemann, U., Gries, N. C., and Moore, R. J., 1998, “The Relationship Between Height, Shape and Histological Changes in Early Degeneration of the Lower Lumbar Discs,” Eur. Spine J., 7 (3), pp. 212–217.
Boos, N., Nerlich, A. G., Wiest, I., von der Mark, K., and Aebi, M., 1997, “Immunolocalization of Type X Collagen in Human Lumbar Intervertebral Discs During Aging and Degeneration,” Histochem. Cell Biol., 108 (6), pp. 471–480.
Boos, N., Weissbach, S., Rohrbach, H., Weiler, C., Spratt, K. F., and Nerlich, A. G., 2002, “Classification of Age-Related Changes in Lumbar Intervertebral Discs: 2002 Volvo Award in Basic Science,” Spine, 27 (23), pp. 2631–2644.
Bishop, P. B., and Pearce, R. H., 1993, “The Proteoglycans of the Cartilaginous End-Plate of the Human Intervertebral Disc Change After Maturity,” J. Orthop. Res., 11 (3), pp. 324–331.
Simon, B. R., and Gaballa, M. A., 1988, “Poroelastic Finite Element Models for the Spinal Motion Segment Including Ionic Swelling,” "Computational Methods in Bioengineering", R.L.Spilker, and B.R.Simon, eds., American Society of Mechanical Engineers, New York, pp. 93–99.
Urban, J. P., and McMullin, J. F., 1988, “Swelling Pressure of the Lumbar Intervertebral Discs: Influence of Age, Spinal Level, Composition, and Degeneration,” Spine, 13 (2), pp. 179–187.
Roughley, P. J., Alini, M., and Antoniou, J., 2002, “The Role of Proteoglycans in Aging, Degeneration and Repair of the Intervertebral Disc,” Biochem. Soc. Trans., 30 (6), pp. 869–874.
Cs-Szabo, G., Ragasa-San Juan, D., Turumella, V., Masuda, K., Thonar, E. J., and An, H. S., 2002, “Changes in Mrna and Protein Levels of Proteoglycans of the Anulus Fibrosus and Nucleus Pulposus During Intervertebral Disc Degeneration,” Spine, 27 (20), pp. 2212–2219.
Broberg, K. B., 1993, “Slow Deformation of Intervertebral Discs,” J. Biomech., 26 (4–5), pp. 501–512.