0
TECHNICAL BRIEFS

Automated Methodology for Determination of Stress Distribution in Human Abdominal Aortic Aneurysm

[+] Author and Article Information
Madhavan L. Raghavan

Department of Biomedical Engineering,  University of Iowa, Iowa City, IA 52242ml-raghavan@uiowa.edu

Mark F. Fillinger

Department of Surgery,  Dartmouth College, Hanover, NH

Steven P. Marra, Bernhard P. Naegelein, Francis E. Kennedy

Thayer School of Engineering,  Darmouth College, Hanover, NH

J Biomech Eng 127(5), 868-871 (Apr 22, 2005) (4 pages) doi:10.1115/1.1992530 History: Received June 23, 2004; Revised April 22, 2005

Knowledge of impending abdominal aortic aneurysm (AAA) rupture can help in surgical planning. Typically, aneurysm diameter is used as the indicator of rupture, but recent studies have hypothesized that pressure-induced biomechanical stress may be a better predictor. Verification of this hypothesis on a large study population with ruptured and unruptured AAA is vital if stress is to be reliably used as a clinical prognosticator for AAA rupture risk. We have developed an automated algorithm to calculate the peak stress in patient-specific AAA models. The algorithm contains a mesh refinement module, finite element analysis module, and a postprocessing visualization module. Several aspects of the methodology used are an improvement over past reported approaches. The entire analysis may be run from a single command and is completed in less than 1h with the peak wall stress recorded for statistical analysis. We have used our algorithm for stress analysis of numerous ruptured and unruptured AAA models and report some of our results here. By current estimates, peak stress in the aortic wall appears to be a better predictor of rupture than AAA diameter. Further use of our algorithm is ongoing on larger study populations to convincingly verify these findings.

FIGURES IN THIS ARTICLE
<>
Copyright © 2005 by American Society of Mechanical Engineers
Your Session has timed out. Please sign back in to continue.

References

Figures

Grahic Jump Location
Figure 1

Element distortion metric distribution before and after the mesh refinement process. The inserted boxes demonstrate that the refinement module collapses the highly distorted elements, while retaining element connectivity for other elements.

Grahic Jump Location
Figure 2

Comparison of von Mises stress distribution between a representative triangular mesh used for stress analyses and fine meshes made of triangular and quadrilateral elements. The similarity in distribution patterns and peak wall stress demonstrate the independence of the computed results to the mesh size and type used.

Tables

Errata

Discussions

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related Journal Articles
Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In