Silver, F. H., Christiansen, D. L., and Buntin, C. M., 1989, “Mechanical Properties of the Aorta: A Review,” Crit. Rev. Biomed. Eng., 17 , pp. 323–358.
Humphrey, J. D., 1999, “An evaluation of pseudoelastic descriptors used in arterial mechanics,” J. Biomech. Eng., 121 , pp. 259–262.
Humphrey, J. D., 2002, "Cardiovascular Solid Mechanics: Cells, Tissues, and Organs", Springer-Verlag, New York.
Holzapfel, G. A., Gasser, T. C., and Ogden, R. W., 2000, “A New Constitutive Framework For Arterial Wall Mechanics and a Comparative Study of Material Models,” J. Elasticity, 61 , pp. 1–48.
Fung, Y. C., Fronek, K., and Patitucci, P., 1979, “Pseudoelasticity of Arteries and the Choice of its Mathematical Expression,” Am. J. Physiol., 237 , pp. H620–H631.
Chuong, C. J., and Fung, Y. C., 1983. “Three-Dimensional Stress Distribution in Arteries,” J. Biomech. Eng., 105 , pp. 268–274.
Vaishnav, R. N., Young, J. T., and Patel, D. J., 1973, “Distribution of Stresses and of Strain–Energy Density Through the Wall Thickness in a Canine Aortic Segment,” Circ. Res., 32 , pp. 577–583.
Takamizawa, K., and Hayashi, K., 1987, “Strain Energy Density Function and Uniform Strain Hypothesis For Arterial Mechanics,” J. Biomech.
[CrossRef], 20 , pp. 7–17.
Zulliger, M. A., Fridez, P., Hayashi, K., and Stergiopulos, N., 2004, “A Strain Energy Function For Arteries Accounting For Wall Composition and Structure,” J. Biomech.
[CrossRef], 37 , pp. 989–1000.
ChristieG. W., and Medland, I. C., 1982, “A Non-linear Finite Element Stress Analysis of Bioprosthetic Heart Valves,” in "Finite Elements in Biomechanics", R.H.Gallagher, B.R.Simon, P.C.Johnson, and GrossJ.F. (eds.), Wiley, Chichester, pp. 153–179.
Li, J., Luo, X. Y., and Kuang, Z. B., 2001, “A Nonlinear Anisotropic Model for porcine aortic heart valves,” J. Biomech.
[CrossRef], 34 , pp. 1279–1289.
Luo, X. Y., Li, W. G., and Li, J., 2003, “Geometrical Stress-Reducing factors in the Anisotropic Porcine Heart Valves,” J. Biomech. Eng.
[CrossRef], 125 , pp. 735–744.
de Hart, J., Cacciola, G., Schreurs, P. J., and Peters, G. W., 1998, “A Three-Dimensional Analysis of a Fibre-Reinforced Aortic Valve Prosthesis,” J. Biomech.
[CrossRef], 31 , pp. 629–638.
de Hart, J., BaaijensF. P., Peters, G. W., and Schreurs, P. J., 2003, “A Computational fluid–Structure Interaction Analysis of a Fiber-Reinforced Stentless Aortic Valve,” J. Biomech.
[CrossRef], 36 , pp. 699–712.
Humphrey, J. D., 1999, “Remodeling of a Collagenous Tissue at Fixed Lengths,” J. Biomech. Eng., 121 , pp. 591–597.
Boerboom, R. A., Driessen, N. J., Bouten, C. V., Huyghe, J. M., and Baaijens, F. P., 2003, “A Finite Element Model of Mechanically Induced Collagen Fiber Synthesis and Degradation in the Aortic Valve,” Ann. Biomed. Eng.
[CrossRef], 31 , pp. 1040–1053.
Driessen, N. J., Boerboom, R. A., Huyghe, J. M., Bouten, C. V., and BaaijensF. P., 2003, “Computational Analyses of Mechanically Induced Collagen Fiber Remodeling in the Aortic Heart Valve,” J. Biomech. Eng.
[CrossRef], 125 , pp. 549–557.
Driessen, N. J., Wilson, W., Bouten, C. V., and BaaijensF. P., 2004, “A Computational Model for Collagen Fibre Remodelling in the Arterial Wall,” J. Theor. Biol.
[CrossRef], 226 , pp. 53–64.
Driessen, N. J., Bouten, C. V., and Baaijens, F. P., 2005, “Improved Prediction of the Collagen Fiber Architecture in the Aortic Heart Valve,” J. Biomech. Eng.
[CrossRef], 127 (2), pp. 329-336.
Finlay, H. M., McCullough, L., and Canham, P. B., 1995, “Three-Dimensional Collagen Organization of Human Brain Arteries at Different Transmural Pressures,” J. Vasc. Res., 32 , pp. 301–312.
Holzapfel, G. A., Gasser, T. C., and Stadler, M., 2002, “A Structural Model For the Viscoelastic Behavior of Arterial Walls: Continuum Formulation and Finite Element Analysis,” Eur. J. Mech. A/Solids
[CrossRef], 21 , pp. 441–463.
Sacks, M. S., Smith, D. B., and Hiester, E. D., 1998, “The Aortic Valve Microstructure: Effects of Transvalvular Pressure,” J. Biomed. Mater. Res.
[CrossRef], 41 , pp. 131–141.
Billiar, K. L., and SacksM. S., 2000, “Biaxial Mechanical Properties of the Natural and Glutaraldehyde Treated Aortic Valve Cusp—Part I: Experimental Results,” J. Biomech. Eng.
[CrossRef], 122 , pp. 23–30.
Billiar, K. L., and SacksM. S., 2000, “Biaxial mechanical properties of the natural and glutaraldehyde treated aortic valve cusp—Part II: a structural constitutive model,” J. Biomech. Eng.
[CrossRef], 122 , pp. 327–335.
Lanir, Y., 1979, “A Structural Theory For the Homogeneous Biaxial Stress–Strain Relationships in Flat Collagenous Tissues,” J. Biomech.
[CrossRef], 12 , pp. 423–436.
Lanir, Y., 1983, “Constitutive Equations for Fibrous Connective Tissues,” J. Biomech.
[CrossRef], 16 , pp. 1–12.
Zioupos, P., and Barbenel, J. C., 1994, “Mechanics of Native Bovine Pericardium. I. The Multiangular Behaviour of Strength and Stiffness of the Tissue,” Biomaterials
[CrossRef], 15 , pp. 366–373.
Zioupos, P., and Barbenel, J. C., 1994, “Mechanics of Native Bovine Pericardium. II. A Structure Based Model for the Anisotropic Mechanical Behaviour of the Tissue,” Biomaterials
[CrossRef], 15 , pp. 374–382.
Sacks, M. S., 2003, “Incorporation of Experimentally-Derived Fiber Orientation Into a Structural Constitutive Model for Planar Collagenous Tissues,” J. Biomech. Eng.
[CrossRef], 125 , pp. 280–287.
Humphrey, J. D., and Yin, F. C., 1987, “A New Constitutive Formulation For Characterizing the Mechanical Behavior of Soft Tissues,” Biophys. J., 52 , pp. 563–570.
Barocas, V. H., and Tranquillo, R. T., 1997, “An Anisotropic Biphasic Theory of Tissue-Equivalent Mechanics: The Interplay Among Cell Traction, Fibrillar Network Deformation, Fibril Alignment, and Cell Contact Guidance,” J. Biomech. Eng., 119 , pp. 137–145.
Driessen, N. J., Peters, G. W., Huyghe, J. M., Bouten, C. V., and Baaijens, F. P., 2003, “Remodelling of Continuously Distributed Collagen Fibres in Soft Connective Tissues,” J. Biomech.
[CrossRef], 36 , pp. 1151–1158.
Hurschler, C., Provenzano, P. P., and Vanderby, R., 2003, “Application of a Probabilistic Microstructural Model to Determine Reference Length and Toe-to-Linear Region Transition in Fibrous Connective Tissue,” J. Biomech. Eng.
[CrossRef], 125 , pp. 415–422.
Bathe, K. J., 1996, "Finite Element Procedures", Prentice–Hall, Englewood Cliffs, NJ.
Segal, A., 1984, "SEPRAN user manual, standard problems and programmers guide", Ingenieursbureau SEPRA, Leidschendam, the Netherlands.
van de Vosse, F. N., de Hart, J., van Oijen, C. H., Bessems, D., Gunther, T. W., Segal, A., Wolters, B. J., Stijnen, J. M., and Baaijens, F. P., 2003. “Finite-Element-Based Computational Methods For Cardiovascular Fluid–Structure Interaction,” J. Eng. Math., 47 , pp. 335–368.
Sacks, M. S., Smith, D. B., and HiesterE. D., 1997, “A Small Angle Light Scattering Device for Planar Connective Tissue Microstructural Analysis,” Ann. Biomed. Eng., 25 , pp. 678–689.
Sacks, M. S., 2004, personal communication.
Vesely, I., 1998, “The Role of Elastin in Aortic Valve Mechanics,” J. Biomech.
[CrossRef], 31 , pp. 115–123.
Sauren, A. A., van Hout, M. C., van Steenhoven, A. A., Veldpaus, F. E., and Janssen, J. D., 1983, “The Mechanical Properties of Porcine Aortic Valve Tissues,” J. Biomech.
[CrossRef], 16 , pp. 327–337.
Billiar, K. L., and Sacks, M. S., 1997, “A Method to Quantify the Fiber Kinematics of Planar Tissues under Biaxial Stretch,” J. Biomech.
[CrossRef], 30 , pp. 753–756.
Peeters, E. A., Bouten, C. V., Oomens, C. W., and Baaijens, F. P., 2003, “Monitoring the Biomechanical Response of Individual Cells under Compression: a New Compression Device,” Med. Biol. Eng. Comput., 41 , pp. 498–503.
Thubrikar, M. J., 1990, "The Aortic Valve", CRC Press, Boca Raton, FL.
Vesely, I., and Noseworthy, R., 1992, “Micromechanics of the Fibrosa and the Ventricularis in Aortic Valve Leaflets,” J. Biomech.
[CrossRef], 25 , pp. 101–113.
Thubrikar, M. J., Aouad, J., and Nolan, S. P., 1986, “Comparison of the in vivo and in vitro mechanical properties of aortic valve leaflets,” J. Thorac. Cardiovasc. Surg., 92 , pp. 29–36.
Vesely, I., 1996, “Reconstruction of Loads in the Fibrosa and Ventricularis of Porcine Aortic Valves,” ASAIO J.42 , pp. M739–M746.
Fung, Y. C., 1990, "Biomechanics: Motion, Flow, Stress and Growth", Springer-Verlag, New York.
Gloeckner, D. C., Sacks, M. S., Fraser, M. O., Somogyi, G. T., de Groat, W. C., and Chancellor, M. B., 2002, “Passive Biaxial Mechanical Properties of the Rat Bladder Wall After Spinal Cord Injury,” J. Urol., 167 , pp. 2247–2252.
Sacks, M. S., and Chuong, C. J., 1998, “Orthotropic mechanical properties of chemically treated bovine pericardium,” Ann. Biomed. Eng.
[CrossRef], 26 , pp. 892–902.
Sacks, M. S. and Gloeckner, D. C., 1999, “Quantification of the Fiber Architecture and Biaxial Mechanical Behavior of Porcine Intestinal Submucosa,” J. Biomed. Mater. Res.
[CrossRef], 46 (1), pp. 1–10.
Yin, F. C., Strumpf, R. K., Chew, P. H., and Zeger, S. L., 1987, “Quantification of the Mechanical Properties of Noncontracting Canine Myocardium Under Simultaneous Biaxial Loading,” J. Biomech.
[CrossRef], 20 (6), pp. 577–589.