0
TECHNICAL PAPERS: Soft Tissue

The Relationship of Normal and Abnormal Microstructural Proliferation to the Mitral Valve Closure Sound

[+] Author and Article Information
Daniel R. Einstein

Department of Bioengineering, University of Washington, Seattle, Washington 98195

Karyn S. Kunzelman, Richard P. Cochran

Central Maine Medical Center, Central Maine Heart and Vascular Institute, Lewiston, Maine 04240

Per G. Reinhall

Department of Mechanical Engineering, University of Washington, Seattle, Washington 98195

Mark A. Nicosia

University of Minnesota, Department of Biomedical Engineering, Minneapolis, Minnesota 55455

J Biomech Eng 127(1), 134-147 (Mar 08, 2005) (14 pages) doi:10.1115/1.1835359 History: Received October 01, 2003; Revised September 01, 2004; Online March 08, 2005
Copyright © 2005 by ASME
Your Session has timed out. Please sign back in to continue.

References

Cole,  W. G., Chan,  D., Hickey,  A. J., and Wilcken,  D. E., 1984, “Collagen Composition of Normal and Myxomatous Human Mitral Heart Valves,” Biochem. J., 219, pp. 451–460.
Fornes,  P., Heudes,  D., Fuzellier,  J. F., Tixier,  D., Bruneval,  P., and Carpentier,  A., 1999, “Correlation Between Clinical and Histologic Patterns of Degenerative Mitral Valve Insufficiency: A Histomorphometric Study of 130 Excised Segments,” Cardiovasc. Pathol., 8, pp. 81–92.
Barber,  J. E., Kasper,  F. K., Ratliff,  N. B., Cosgrove,  D. M., Griffin,  B. P., and Vesely,  I., 2001, “Mechanical Properties of Myxomatous Mitral Valves,” J. Thorac. Cardiovasc. Surg., 122, pp. 955–962.
Lis,  Y., Burleigh,  D., Parker,  D. J., Child,  A. H., Hogg,  J., and Davies,  M. J., 1987, “Biochemical Characterization of Individual Normal, Floppy and Rheumatic Human Mitral Valves,” Biochem. J., 244, pp. 597–603.
Rabkin,  E., Aikawa,  M., Stone,  J. R., Fukumoto,  Y., Libby,  P., and Schoen,  F. J., 2001, “Activated Interstitial Myofibroblasts Express Catabolic Enzymes and Mediate Matrix Remodeling in Myxomatous Heart Valves,” Circulation, 104, pp. 2525–2532.
Einstein,  D. R., Kunzelman,  K. S., Reinhall,  P. G., Nicosia,  M. A., and Cochran,  R. P., 2004, “Hemodynamic Determinants of the Mitral Valve Closure Sound: A Finite Element Study,” IEEE Med. Biolo. Eng. Comput., 42(6), pp. 832–846.
Einstein,  D. R., Reinhall,  P., Nicosia,  M., Kunzelman,  K. S., and Cochran,  R. P., 2005, “Nonlinear Finite Element Analysis of the Mitral Valve,” J. Heart Valve Dis., 14 (in press).
Einstein, D. R., 2002, “Nonlinear Acoustic Analysis of the Mitral Valve,” in Bioengineering, University of Washington, Seattle, p. 294.
Kunzelman, K. S., 1991, “Engineering Analysis of Mitral Valve Structure and Function,” in Biomedical Engineering, University of Texas Southwestern Medical Center, Dallas.
Sacks,  M. S., 2003, “Incorporation of SALS-Derived Fiber Orientation Data Into a Structural Constitutive Model For Planar Collagenous Tissues,” J. Biomech. Eng., 125, pp. 280–287.
Burge, E. C., 1996, “A Microstructural and Biochemical Analysis of the Mitral Valve,” in Bioengineering, University of Washington, Seattle, p. 357.
Kunzelman,  K. S., Cochran,  R. P., Murphree,  S. S., Ring,  W. S., Verrier,  E. D., and Eberhart,  R. C., 1993, “Differential Collagen Distribution in the Mitral Valve and its Influence on Biomechanical Behavior,” J. Heart Valve Dis., 2, pp. 236–244.
Cochran,  R. P., Kunzelman,  K. S., Chuong,  C. J., Sacks,  M. S., and Eberhart,  R. C., 1991, “Nondestructive Analysis of Mitral Valve Collagen Fiber Orientation,” ASAIO Trans., 37, pp. M447–M448.
May-Newman,  K., and Yin,  F. C., 1998, “A Constitutive Law For Mitral Valve Tissue,” J. Biomech. Eng., 120, pp. 38–47.
Press, W. H., Teukolsky, S. A., Vetterling, W. T., and Flannery, B. P., 1992, Numerical Recipes in Fortran 77, Cambridge University Press, Cambridge.
Kunzelman,  K. S., and Cochran,  R. P., 1990, “Mechanical Properties of Basal and Marginal Mitral Valve Chordae Tendineae,” ASAIO Trans., 36, pp. M405–M408.
Stein,  P. D., and Sabbah,  H. N., 1978, “Accentuation of the Heart Sounds in Anemia,” Am. J. Physiol., 235, pp. H664–H669.
Kinsler, L. E., 1982, Fundamentals of Acoustics, John Wiley and Sons, New York.
Hlawatsch,  F., and Boudreaux-Bartels,  G. F., 1992, “Linear and Quadratic Time–Frequency Representations,” IEEE Signal Process. Mag., 92, pp. 21–67.
Jones,  D. L., and Baranuik,  R. G., 1995, “An Adaptive Optimal-Kernel Time–Frequency Representation,” J. Global Optimization6, pp. 1–37.
Akhtar,  S., Meek,  K. M., and James,  V., 1999, “Ultrastructure Abnormalities in Proteoglycans, Collagen Fibrils, and Elastic Fibers in Normal and Myxomatous Mitral Valve Chordae Tendineae,” Cardiovasc. Pathol., 8, pp. 191–201.
Akhtar,  S., Meek,  K. M., and James,  V., 1999, “Immunolocalization of Elastin, Collagen Type I and Type III, Fibronectin, and Vitronectin in Extracellular Matrix Components of Normal and Myxomatous Mitral Heart Valve Chordae Tendineae,” Cardiovasc. Pathol., 8, pp. 203–211.
Barber,  J. E., Ratliff,  N. B., Cosgrove,  D. M., Griffin,  B. P., and Vesely,  I., 2001, “Myxomatous Mitral Valve Chordae. I: Mechanical Properties,” J. Heart Valve Dis., 10, pp. 320–324.
Grande-Allen,  K. J., Griffin,  B. P., Calabro,  A., Ratliff,  N. B., Cosgrove,  D. M., and Vesely,  I., 2001, “Myxomatous Mitral Valve Chordae. II: Selective Elevation of Glycosaminoglycan Content,” J. Heart Valve Dis., 10, pp. 325–332; discussion pp. 332–333.
Conrado Dos Santos,  W. L., Verney,  R. N., Montclos,  H. De, Veysseyre,  C., Carraz,  M., and Grimaud,  J. A., 1991, “Connective Tissue Changes in Rheumatic Heart Disease,” J. Submicrosc. Cytol. Pathol., 23, pp. 213–220.
Henney,  A. M., Parker,  D. J., and Davies,  M. J., 1982, “Collagen Biosynthesis in Normal and Abnormal Human Heart Valves,” Cardiovasc. Res., 16, pp. 624–630.
Segal, B. L., 1996, Clinical Recognition of Rheumatic Heart Disease, M. A. Chizner, ed., Laennec Publishing, Classic Teachings in Clinical Cardiology, pp. 991–1015.
Blick,  E. F., Sabbah,  H. N., and Stein,  P. D., 1979, “One-Dimensional Model of Diastolic Semilunar Valve Vibrations Productive of Heart Sounds,” J. Biomech., 12, pp. 223–227.
Mazumdar,  J., and Hearn,  T. C., 1978, “Mathematical Analysis of Mitral Valve Leaflets,” J. Biomech., 11, pp. 291–296.
Billiar,  K. L., and Sacks,  M. S., 2000, “Biaxial Mechanical Properties of the Native and Glutaraldehyde-Treated Aortic Valve Cusp: Part II—A Structural Constitutive Model,” J. Biomech. Eng., 122, pp. 327–335.
Genest,  J., and Durand,  L. G., 1985, “Relationship of the Left Ventricular and Apical First Sounds to the Left Ventricular Derivative,” Med. Biol. Eng. Comput., 23, pp. 95–98.
May-Newman,  K., and Yin,  F. C., 1995, “Biaxial Mechanical Behavior of Excised Porcine Mitral Valve Leaflets,” Am. J. Phys., 269, pp. H1319–H1327.
Kunzelman,  K. S., and Cochran,  R. P., 1992, “Stress/Strain Characteristics of Porcine Mitral Valve Tissue: Parallel Versus Perpendicular Collagen Orientation,” J. Card. Surg., 7, pp. 71–78.
Dreger,  S., Taylor,  P., Allen,  S., and Yacoub,  M., 2002, “Profile and Localization of Matrix Metalloproteinases (MMPs) and Their Tissue Inhibitors (TIMPs) in Human Heart Valves,” J. Heart Valve Dis., 11, pp. 875–880.
Quick,  D. W., Kunzelman,  K. S., Kneebone,  J. M., and Cochran,  R. P., 1997, “Collagen Synthesis is Upregulated in Mitral Valves Subjected to Altered Stress,” ASAIO J., 43, pp. 181–186.
Barocas,  V. H., and Tranquillo,  R. T., 1997, “An Anisotropic Biphasic Theory of Tissue-Equivalent Mechanics: The Interplay Among Cell Traction Fibrillar Network Deformation Fibril Alignment and Cell Contact Guidance,” J. Biomech. Eng., 119, p. 137.
Sacks, M. S., 2002, personal communication.
Sacks,  M. S., and Chuong,  C. J., 1998, “Orthotropic Mechanical Properties of Chemically Treated Bovine Pericardium,” Ann. Biomed. Eng., 26, pp. 892–902.
Sacks,  M. S., 2001, “The Biomechanical Effects of Fatigue on the Porcine Bioprosthetic Heart Valve,” J. Long Term Eff. Med. Implants, 11, pp. 231–247.
Mallat, S., 1998, A Wavelet Tour of Signal Processing, Academic Press, New York, NY.

Figures

Grahic Jump Location
Time–frequency signatures for A/10 (A), (B), A (C), (D), and A*10 (E), (F ). The left-hand side (A), (C), (E) is the sum of the anterior and posterior velocity signals. The right-hand side (B), (D), (F ) is the acoustic pressure signal.
Grahic Jump Location
Time–frequency signatures for B=35 (A), (B), B=40 (C), (D), and B=45 (E), (F ). The left-hand side (A), (C), (E) is the sum of the anterior and posterior velocity signals. The right-hand side (B), (D), (F ) is the acoustic pressure signal.
Grahic Jump Location
Trans-mitral flow as a function of (A) isotropic parameter α, (B) collagen volume fraction, (C) fiber stiffness, and (D) fiber splay
Grahic Jump Location
Variation of peak frequency with perturbation of parameters for (A) isotropic phase, (B) normalized volume fraction, (C) fiber stiffness, and (D) fiber splay. Anterior leaflet (AL); posterior leaflet (PL); summed leaflet (SL); acoustic pressure (AP)
Grahic Jump Location
Time–frequency signatures for α=1 (A), (B), α=10 (C), (D), α=100 (E), (F ), and α=1000 (G), (H) The left-hand side (A), (C), (E), (G) is the sum of the anterior and posterior velocity signals. The right-hand side (B), (D), (F ), (H) is the acoustic pressure signal.
Grahic Jump Location
Time–frequency signatures for σ=10 deg (A), (B), σ=20 deg (C), (D), and σ=30 deg (E), (F ). The left-hand side (A), (C), (E) is the sum of the anterior and posterior velocity signals. The right-hand side (B), (D), (F ) is the acoustic pressure signal.
Grahic Jump Location
Symmetry conditions and dimensions of fluid domain. The coordinates of three points: (1) the papillary muscle tip; and (2) and (3) the symmetry points of the anterior and posterior annuli are given with respect to the indicated coordinate system for reference.
Grahic Jump Location
Structural paradigm for mitral leaflet tissue. Collagen fibers (wavy lines) are embedded in an isotropic matrix (α). Locally, the fibers have a mean preferred direction (μ). The standard deviation (σ) determines the Gaussian distribution of collagen fibers about that mean as a function of the splay angle (θ).
Grahic Jump Location
Anterior mitral valve, fiber and cross-fiber directions. Arrows indicate the effect of increasing strain levels in the orthogonal direction.
Grahic Jump Location
Mean collagen fiber direction map from SALS data 13
Grahic Jump Location
Location of normal velocity vector calculation projected on the closed anterior and posterior leaflets
Grahic Jump Location
Simulated intraventricular S1 (a) and measured thoracic S1 (b).

Tables

Errata

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related Journal Articles
Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In