0
TECHNICAL PAPERS: Cell

Mechanical Properties of Laser Cut Poly(L-Lactide) Micro-Specimens: Implications for Stent Design, Manufacture, and Sterilization

[+] Author and Article Information
Niels Grabow, Martin Schlun, Katrin Sternberg, Nico Hakansson, Sven Kramer, Klaus-Peter Schmitz

University of Rostock, Institute for Biomedical Engineering, Ernst-Heydemann-Str. 6, D-18057 Rostock, Germany

J Biomech Eng 127(1), 25-31 (Mar 08, 2005) (7 pages) doi:10.1115/1.1835349 History: Received January 23, 2004; Revised September 03, 2004; Online March 08, 2005
Copyright © 2005 by ASME
Your Session has timed out. Please sign back in to continue.

References

Erhard, G., 1993, Konstruieren mit Kunststoffen, Hanser, München, pp. 97–122.
Michaeli, W., Brinkmann, T., and Lessenich-Henkys, V., eds., 1995, Kunststoff-Bauteile werkstoffgerecht konstruieren, Hanser, München, pp. 113–146.
Menges, G., 1990, Werkstoffkunde Kunststoffe, 3rd ed., Hanser, München, pp. 151–168.
Gogolewski,  S., Jovanovic,  M., Perren,  S. M., Dillon,  J. G., and Hughes,  M. K., 1993, “Tissue Response and in Vivo Degradation of Selected Polyhydroxyacids: Polylactides (PLA), Poly(3-hydroxybutyrate) (PHB), and Poly(3-hydroxybutyrate-co-3-hydroxyvalerate) (PHB/VA),” J. Biomed. Mater. Res., 27(9), pp. 1135–1148.
Labinaz,  M., Zidar,  J. P., Stack,  R. S., and Phillips,  H. R., 1995, “Biodegradable Stents: the Future of Interventional Cardiology?,” J. Interv Card. Electrophysiol., 8(4), pp. 395–405.
Zilberman,  M., Schwade,  N. D., Meidell,  R. S., and Eberhart,  R. C., 2001, “Structured Drug-Loaded Bioresorbable Films for Support Structures,” J. Biomater. Sci., Polym. Ed., 12(8), pp. 875–892.
Tamai,  H., Igaki,  K., Kyo,  E., Kosuga,  K., Kawashima,  A., Matsui,  S., Komori,  H., Tsuji,  T., Motohara,  S., and Uehata,  H., 2000, “Initial and 6-Month Results of Biodegradable Poly-l-Lactic Acid Coronary Stents in Humans,” Circulation, 102(4), pp. 399–404.
Valimaa,  T., Laaksovirta,  S., Tammela,  T. L., Laippala,  P., Talja,  M., Isotalo,  T., Petas,  A., Tarri,  K., and Tormala,  P., 2002, “Viscoelastic Memory and Self-Expansion of Self-Reinforced Bioabsorbable Stents,” Biomaterials, 23(17), pp. 3575–3582.
Venkatraman,  S., Poh,  T. L., Vinalia,  T., Mak,  K. H., and Boey,  F., 2003, “Collapse Pressure of Biodegradable Stents,” Biomaterials, 24(12), pp. 2105–2111.
Su,  S. H., Chao,  R. Y., Landau,  C. L., Nelson,  K. D., Timmons,  R. B., Meidell,  R. S., and Eberhart,  R. C., 2003, “Expandable Bioresorbable Endovascular Stent. I. Fabrication and Properties,” Ann. Biomed. Eng., 31(7), pp. 667–677.
Zidar, J. et al., 1994, “Biodegradable Stents,” Textbook of interventional cardiology, 2nd ed., E. Topol, ed., W.B. Saunders, Philadelphia, pp. 787–802.
Freier,  T., Kunze,  C., and Schmitz,  K. P., 2001, “Solvent Removal From Solution Cast Films of Biodegradable Polymers,” J. Mater. Sci. Lett., 20, pp. 1929–1931.
Schmitz, K. P., and Behrend, D., 1999, “Method for the Manufacture of Intraluminal Stents of Bioresorbable Polymeric Material,” US Patent No. 5935506.
Fischer,  E. W., Sterzel,  H. J., and Wegner,  G., 1973, “Investigation of the Structure of Solution Grown Crystals of Lactide Copolymers by Means of Chemical Reactions,” Kolloid Z. Z. Polym., 251, pp. 980–990.
Kalb,  B., and Pennings,  A. J., 1980, “General Crystallization Behavior of Poly(L-Lactic Acid),” Polymer, 21, pp. 607–612.
Lootz,  D., Behrend,  D., Kramer,  S., Freier,  T., Haubold,  A., Benkiesser,  G., Schmitz,  K. P., and Becher,  B., 2001, “Laser Cutting: Influence on Morphological and Physicochemical Properties of Polyhydroxybutyrate,” Biomaterials, 22(18), pp. 2447–2452.
Lincoff,  A. M., Furst,  J. G., Ellis,  S. G., Tuch,  R. J., and Topol,  E. J., 1997, “Sustained Local Delivery of Dexamethasone by a Novel Intravascular Eluting Stent to Prevent Restenosis in the Porcine Coronary Injury Model,” J. Am. Coll. Cardiol., 29(4), pp. 808–816.
ASTM Standard E 793-01: Standard Test Method for Enthalpies of Fusion and Crystallization by Differential Scanning Calorimetry. Annual Book of ASTM Standards, Vol. 14.02, 2001.
Schlun,  M., Martin,  H., Grabow,  N., and Schmitz,  K. P., 2002, “Design Strategy for Balloon-Expandable Stents Made of Biodegradable Polymers Using Finite Element Analysis,” Biomed. Tech., 47, Suppl 1 Pt 2, pp. 831–834.
Grabow,  N., Martin,  H., and Schmitz,  K. P., 2002, “The Impact of Material Characteristics on the Mechanical Properties of a Poly(L-Lactide) Coronary Stent,” Biomed. Tech., 47, Suppl 1 Pt 1, pp. 503–505.
Kunze,  C., Freier,  T., Kramer,  S., and Schmitz,  K. P., 2002, “Anti-Inflammatory Prodrugs as Plasticizers for Biodegradable Implant Materials Based on Poly(3-hydroxybutyrate),” J. Mater. Sci.: Mater. Med., 13, pp. 1051–1055.
Nuutinen,  J. P., Clerc,  C., Virta,  T., and Tormala,  P., 2002, “Effect of Gamma, Ethylene Oxide, Electron Beam, and Plasma Sterilization on the Behavior of SR-PLLA Fibres In Vitro,” J. Biomater. Sci., Polym. Ed., 13(12), pp. 1325–1336.

Figures

Grahic Jump Location
Electron micrograph of a resorbable vascular stent prototype in the undeployed state (I.D.=1.4 mm)
Grahic Jump Location
Finite element model of a deployed stent (I.D.=3.5 mm). Higher local plastic strains are indicated by lighter shades.
Grahic Jump Location
Shouldered double bar micro-specimen as used in the mechanical and thermo-mechanical tests. Note the laser cut between the two struts (each having a width of approx. 300 μm) in the specimen mid-section.
Grahic Jump Location
Polarization micrograph of a mechanical test specimen cross section. Arrows point to the bulk material and the laser affected edge zones.
Grahic Jump Location
Typical stress-strain curves of PLLA/TEC 90/10 (Mw=260.000 g/mol) as a function of deformation speed
Grahic Jump Location
Typical retardation curves, illustrating the influence of TEC on the creep and relaxation behavior of the material. Load during creep=10 MPa. Note the logarithmic ordinate scale.
Grahic Jump Location
Typical modulus—temperature relationship for pure PLLA and PLLA/TEC. The addition of the plasticizer TEC produces a shift of the glass transition range towards lower temperatures, resulting in a lower elastic modulus at 37°C.
Grahic Jump Location
Degree of crystallinity as a function of the leached TEC content [PLLA (100) and leached PLLA/TEC (95/5,90/10,85/15)]

Tables

Errata

Discussions

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related Journal Articles
Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In