0
TECHNICAL PAPERS: Bone/Orthopedic

Finite Element Prediction of Proximal Femoral Fracture Patterns Under Different Loads

[+] Author and Article Information
M. J. Gómez-Benito, J. M. Garcı́a-Aznar, M. Doblaré

Group of Structural Mechanics and Material Modeling, Aragón Institute of Engineering Research (I3A), University of Zaragoza, Marı́a de Luna, 7-50018 Zaragoza, Spain

J Biomech Eng 127(1), 9-14 (Mar 08, 2005) (6 pages) doi:10.1115/1.1835347 History: Received December 30, 2003; Revised September 02, 2004; Online March 08, 2005
Copyright © 2005 by ASME
Your Session has timed out. Please sign back in to continue.

References

Evans,  P. L., and McGrory,  B. J., 2002, “Fractures of Proximal Femur,” Hospital Physician, 38(4), pp. 30–38.
Melton,  L. J., 1993, “Hip Fractures: A Worldwide Problem Today and Tomorrow,” Bone (N.Y.), 14(suppl), pp. S1–S8.
Zuckerman,  J. D., 1996, “Current Concepts: Hip Fracture,” N. Engl. J. Med., 334, pp. 1519–1525.
Perez,  J. V., Warwick,  D. J., Case,  C. P., and Bannister,  G. C., 1995, “Death After Proximal Femoral Fracture-an Autopsy Study,” Injury, 26, No. 4, pp. 237–40.
Marks,  R., Allegrante,  J. P., MacKenzie,  C. R., and Lane,  J. M., 2003, “Hip Fractures Among the Elderly: Cause, Consequences and Control,” Ageing Research Reviews, 2, pp. 57–91.
Ray,  N. F., Chan,  J. K., Thamer,  M., and Melton,  L. J., 1997, “Medical Expenditures for Treatment of Osteoporosis Fractures in the United States in 1995: Report From the National Osteoporosis Foundation,” J. Bone Miner. Res., 12, pp. 24–25.
Lotz,  J. C., Cheal,  E. J., and Hayes,  W. C., 1991, “Fracture Prediction for the Proximal Femur Using Finite Element Models: Part I-Linear Analysis,” J. Biomech. Eng., 113, pp. 353–360.
Lotz,  J. C., Cheal,  E. J., and Hayes,  W. C., 1991, “Fracture Prediction for the Proximal Femur Using Finite Element Models: Part II-Nonlinear Analysis,” J. Biomech. Eng., 113, pp. 361–365.
Keyak,  J. H., Rossi,  S. A., Jones,  K. A., and Skinner,  H. B., 2000, “Prediction of Femoral Fracture Load Using Automated Finite Element Modeling,” J. Biomech., 31, No. 2, pp. 125–133.
Keyak,  J. H., and Rossi,  S. A., 2000, “Prediction of Femoral Fracture Load Using Finite Element Models: An Examination of Stress- and Strain-based Failure Theories,” J. Biomech., 33, No. 2, pp. 209–214.
Keyak,  J. H., 2000, “Relationship Between Femoral Fracture Loads for Two Load Configuration,” J. Biomech., 33, pp. 499–502.
Keyak,  J. H., Rossi,  S. A., Jones,  K. A., Les,  C. M., and Skinner,  H. B., 2001, “Prediction of Fracture Location in the Proximal Femur Using Finite Element Models,” J. Med. Eng. Phys., 23, pp. 657–664.
Ota,  T., Yamamoto,  I., and Morita,  R., 1999, “Fracture Simulation of Femoral Bone Using Finite-element Method: How a Fracture Initiates and Proceeds,” Bone and Mineral Metabolism, 17, pp. 108–112.
Ford,  C. M., Keaveny,  T. M., and Hayes,  W. C., 1996, “The effect of Impact Direction on the Structural Capacity of the Proximal Femur During Falls,” J. Bone Miner. Res., 11, No. 3, pp. 377–383.
Pietruszczak,  S., Inglis,  D., and Pande,  G. N., 1999, “A Fabric-dependent Fracture Criterion for Bone,” J. Biomech., 32, pp. 1071–1079.
Fyhrie,  D. P., and Vashishth,  D., 2000, “Bone Stiffness Predicts Strength Similarly for Human Vertebral Cancellous Bone in Compression and for Cortical Bone in Tension,” Bone (N.Y.), 26, No. 2, pp. 169–173.
Fenech,  C. M., and Keaveny,  T. M., 1999, “A Cellular Solid Criterion for Predicting the Axial-Shear Failure Properties of Bovine Trabecular Bone,” J. Biomech. Eng., 121, pp. 414–422.
Niebur, G. L., 2000, “A Computational Investigation of Multiaxial Failure in Trabecular Bone,” Ph.D thesis, http://biomech1.me.berkeley.edu/∼gln/Dissertation/
Keaveny,  T. M., Wachtel,  E. F., Zadesky,  S. P., and Arramon,  Y. P., 1999, “Application of the Tsai-Wu Quadratic Multiaxial Criterion to Bovine Trabecular Bone,” J. Biomech. Eng., 121, pp. 91–107.
Tsai,  S. W., and Wu,  E. M., 1971, “A General Theory of Strength for Anisotropic Materials,” J. Compos. Mater., 5, pp. 58–80.
Cowin,  S. C., 1986, “Fabric Dependence of an Anisotropic Strength Criterion,” Mech. Mater., 5, pp. 251–260.
Cowin,  S. C., 1986, “Wolff’s Law of Trabecular Architecture at Remodelling Equilibrium,” J. Biomech. Eng., 108, pp. 83–88.
Cezayirlioglu,  H., Bahniuk,  E., Davy,  D. T., and Heiple,  K. G., 1985, “Anisotropic Yield Behavior of Bone Under Combined Axial Force and Torque,” J. Biomech., 18, pp. 61–69.
Hayes, W. C., and Wright, T. M., 1977, “An Empirical Strength Theory for Compact Bone Fracture,” Proc. 4th International Conference on Fracture, Volume III, pp. 1173–1180.
Doblaré,  M., and Garcı́a,  J. M., 2002, “Anisotropic Bone Remodelling Model Based on a Continuum Damage-Repair Theory,” J. Biomech., 35, No. 1, pp. 1–17.
Yang,  K. H., Shen,  K. L., Demetropoulos,  C. K., and King,  A. I., 1996, “The Relationship Between Loading Conditions and Fracture Patterns of the Proximal Femur,” J. Biomech. Eng., 118, pp. 575–578.
I-DEAS , Master Series Release 8.0, Structural Dynamics Research Corporation, 2001, EDS.
Doblaré,  M., and Garcı́a,  J. M., 2001, “Application of an Anisotropic Bone-remodelling Model Based on a Damage-repair Theory to the Analysis of the Proximal Femur Before and After Hip Replacement,” J. Biomech., 34, pp. 1157–1170.
Garcia,  J. M., Martinez,  M. A., and Doblaré,  M., 2001, “An Anisotropic Internal-external Bone Adaptation Model Based on a Combination of CAO and Continuum Damage Mechanics Technologies,” Computer Methods in Biomechanics and Biomedical Engineering, 4, No. 4, pp. 355–378.
Cowin,  S. C., 1985, “The Relationship Between the Elasticity Tensor and the Fabric Tensor,” Mech. Mater., 4, pp. 137–147.
Lekhnitskii, S. G., 1981, Theory of Elasticity of an Anisotropic Body, Mir, Moscow.
Ashman,  R. B., Cowin,  S. C., Van Buskirk,  W. C., and Rice,  J. C., 1984, “A Continuous Ware Technique for the Measurement of the Elastic Properties of Bone,” J. Biomech., 17, pp. 349–361.
Reilly,  T. D., and Burstein,  A. H., 1974, “The Mechanical Properties of Cortical Bone,” J. Bone Jt. Surg., 56, pp. 1001–1022.
Reilly,  T. D., and Burstein,  A. H., 1975, “The Elastic and Ultimate Properties of Compact Bone Tissue,” J. Biomech., 8, No. 6, pp. 393–405.
Carter,  D. R., Fyhrie,  D. P., and Whalen,  T., 1987, “Trabecular Bone Density and Loading History: Regulation of Tissue Biology by Mechanical Energy,” J. Biomech., 20, pp. 785–795.
Keller,  T. S., 1994, “Predicting the Compressive Mechanical Behavior of Bone,” J. Biomech., 27, pp. 1159–1168.
Keyak,  J. H., Lee,  I. Y., and Skinner,  H. B., 1994, “Correlations Between Orthogonal Mechanical Properties and Density of Trabecular Bone: Use of Different Densitometric Measures,” J. Biomed. Mater. Res., 28, pp. 389–397.
Keyak,  J. H., Rossi,  A. R., Jones,  K. A., and Skinner,  H. B., 1998, “Prediction of Femoral Fracture Load Using Automated Finite Element Modeling,” J. Biomech., 31, pp. 125–133.
Hernandez,  C. J., Beaupré,  G. S., Séller,  T. S., and Carter,  D. R., 2001, “The Influence of Bone Volume Fraction and Ash Fraction on Bone Strength and Modulus,” Bone (N.Y.), 29, No. 1, pp. 74–78.
Martin, R. B., Burr, D. B., and Sharkey, N., 1998, Skeletal Tissue Mechanics, Springer-Verlag, New York, p. 137.
Müller, M. E., Allgöwer, M., Schneider, R., and Willenegger, H., 1993, Manual de osteosı́ntesis, CDRom, Springer-Verlag Ibérica, Barcelona.
Taylor,  D., and Lee,  T. C., 1998, “Measuring the Shape and Size of Microcracks in Bone,” J. Biomech., 31, No. 12, pp. 1177–1180.
Akkus,  O., and Rimnac,  C. M., 2001, “Cortical Bone Tissue Resists Fatigue Fracture by Deceleration and Arrest of Microcrack Growth,” J. Biomech., 34, No. 6, pp. 757–764.
Taylor,  D., 1998, “Microcrack Growth Parameters for Compact Bone Deduced From Stiffness Variations,” J. Biomech., 31, No. 7, pp. 587–592.
Taylor,  D., and Kuiper,  J. H., 2001, “The Prediction of Stress Fractures Using a ‘Stressed Volume’ Concept,” J. Orthop. Res. , 19, No. 5, pp. 919–926.
Prendergast.,  P. J., and Taylor,  D., 1994, “Prediction of Bone Adaptation Using Damage Accumulation,” J. Biomech., 27, No. 8, pp. 1067–1076.
Ramtani,  S., and Zidi,  M., 2001, “A Theoretical Model of the Effect of Continuum Damage on a Bone Adaptation Model,” J. Biomech., 34, No. 4, pp. 471–479.
Martin, R. B., Burr, D. B., and Sharkey, N., 1998, Skeletal Tissue Mechanics, Springer-Verlag, New York, pp. 209–212.
Hazelwood,  S. J., Martin,  R. B., Rashid,  M. M., and Rodrigo,  J. J., 2001, “A Mechanistic Model for Internal Bone Remodeling Exhibits Different Dynamic Responses in Disuse and Overload,” J. Biomech., 34, No. 3, pp. 299–308.
Burr,  D. B., Turner,  C. H., Naick,  P., Forwood,  M. R., Ambrosius,  W., Hasan,  M. S., and Pidaparti,  R., 1998, “Does Microdamage Accumulation Affect the Mechanical Properties of Bone?,” J. Biomech., 31, pp. 337–345.
Yeh,  O. C., and Keaveny,  T. M., 2001 “Relative Roles of Microdamage and Microfracture in the Mechanical Behavior of Trabecular Bone,” J. Orthop. Res., 19, pp. 1001–1007.
Keaveny,  T. M., Wachtel,  E. F., Ford,  C. M., and Hayes,  W. C., 1994, “Differences Between the Tensile and Compressive Strengths of Bovine Tibial Trabecular Bone Depend on Modulus,” J. Biomech., 27, pp. 1137–1146.
Fiechtner,  J. J, 2003, “Hip Fracture Prevention. Drug Therapies and Lifestyle Modifications that can Reduce Risk,” Postgrad Med., 114, No. 3, pp. 22–28.

Figures

Grahic Jump Location
FE mesh of the femur: anterior and posterior views, boundary conditions, and applied loads
Grahic Jump Location
Average distribution of the apparent density (g/cm3) in a healthy femur: (a) anterior view, (b) midcoronal cut, and (c) posterior view
Grahic Jump Location
Directional distribution of the elastic modulus (GPa) (surfaces represent the elastic moduli at a given point along different directions 31)
Grahic Jump Location
Experiments of Yang et al. 26 (a) experimental device, (b) loads and boundary conditions in the FE model, and (c) complete simulated model
Grahic Jump Location
Load applied at the lesser tronchanter (α=0.2, load amplitude=3040 N): (a) x ray of a neck fracture 41, and (b) distribution of the coefficient of risk to fracture predicted with the anisotropic criterion
Grahic Jump Location
Distribution of the RFC, for the case of a load applied at the lesser tronchanter, using different bone fracture isotropic criteria (α=0.2, load amplitude=3040 N): (a) Von Mises, (b) Hoffman, and (c) maximum principal tensile stress
Grahic Jump Location
Distribution of the RFC for a load applied at the lesser tronchanter, using different bone fracture criteria using α=0.4, load amplitude=6700 N: (a) Cowin, (b) von Mises, (c) Hoffman, and (d) maximum principal tensile stress
Grahic Jump Location
Distribution of the RFC for a load applied at the lesser tronchanter, using different bone fracture criteria using α=0.6, load amplitude=11,000 N: (a) Cowin, (b) von Mises, (c) Hoffman, and (d) maximum principal tensile stress
Grahic Jump Location
Load applied at the greater tronchanter (α=0.2, load amplitude=3040 N): (a) x-ray of the experimental neck fracture 26, and (b) distribution of the coefficient of risk to fracture predicted with the anisotropic criterion
Grahic Jump Location
Distribution of the RFC for a load applied at the greater tronchanter, using different bone fracture isotropic criteria: (a) Von Mises, (b) Hoffman, and (c) maximum principal tensile stress

Tables

Errata

Discussions

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related Journal Articles
Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In