0
TECHNICAL PAPERS: Bone/Orthopedic

Effect of Microcomputed Tomography Voxel Size on the Finite Element Model Accuracy for Human Cancellous Bone

[+] Author and Article Information
Yener N. Yeni, Gregory T. Christopherson, X. Neil Dong, Do-Gyoon Kim, David P. Fyhrie

Bone and Joint Center, Henry Ford Hospital, Detroit, MI

J Biomech Eng 127(1), 1-8 (Mar 08, 2005) (8 pages) doi:10.1115/1.1835346 History: Revised August 18, 2004; Received December 22, 2004; Online March 08, 2005
Copyright © 2005 by ASME
Your Session has timed out. Please sign back in to continue.

References

Tosteson, A., 2000, In NIH Concensus Development Conference on Osteoporosis Prevention, Diagnosis, and Therapy, NIH, Bethesda, MD, pp. 65–66.
Gallagher,  J. C., Melton,  L. J., Riggs,  B. L., and Bergstrath,  E., 1980, “Epidemiology of Fractures of the Proximal Femur in Rochester, Minnesota,” Clin. Orthop., 150, pp. 163–171.
Cummings,  S. R., Kelsey,  J. L., Nevitt,  M. C., and O’Dowd,  K. J., 1985, “Epidemiology of Osteoporosis and Osteoporotic Fractures,” Epidemiol. Rev., 7, pp. 178–208.
Melton,  L. J., Lane,  A. W., Cooper,  C., Eastell,  R., O’Fallon,  W. M., and Riggs,  B. L., 1993, “Prevalence and Incidence of Vertebral Deformities,” Osteoporosis Int., 3, pp. 113–119.
Ross,  P. D., 1997, “Clinical Consequences of Vertebral Fractures,” Am. J. Med., 103, pp. 30S–42S; discussion 42S–43S.
Nevitt,  M. C., Ross,  P. D., Palermo,  L., Musliner,  T., Genant,  H. K., and Thompson,  D., 1999, “Association of Prevalent Vertebral Fractures, Bone Density, and Alendronate Treatment With Incident Vertebral Fractures: Effect of Number and Spinal Location of Fractures,” Bone (N.Y.), 25, pp. 613–619.
Kanis,  J. A., Melton,  L. J., Christiansen,  C., Johnston,  C. C., and Khaltaev,  N., 1994, “The Diagnosis of Osteoporosis,” J. Bone Miner. Res., 9, pp. 1137–1141.
Silva,  M. J., Keaveny,  T. M., and Hayes,  W. C., 1997, “Load Sharing Between the Shell and Centrum in the Lumbar Vertebral Body,” Spine, 22, pp. 140–150.
Bryce,  R., Aspden,  R. M., and Wytch,  R., 1995, “Stiffening Effects of Cortical Bone on Vertebral Cancellous Bone in situ,” Spine, 20, pp. 999–1003.
Andresen,  R., Werner,  H. J., and Schober,  H. C., 1998, “Contribution of the Cortical Shell of Vertebrae to Mechanical Behavior of the Lumbar Vertebrae With Implications for Predicting Fracture Risk,” Br. J. Radiol., 71, pp. 759–765.
Liebschner,  M. A., Kopperdahl,  D. L., Rosenberg,  W. S., and Keaveny,  T. M., 2003, “Finite Element Modeling of the Human Thoracolumbar Spine,” Spine, 28, pp. 559–565.
Mizrahi,  J., Silva,  M. J., Keaveny,  T. M., Edwards,  W. T., and Hayes,  W. C., 1993, “Finite-Element Stress Analysis of the Normal and Osteoporotic Lumbar Vertebral Body,” Spine, 18, pp. 2088–2096.
Niebur,  G. L., Yuen,  J. C., Hsia,  A. C., and Keaveny,  T. M., 1999, “Convergence Behavior of High-Resolution Finite Element Models of Trabecular Bone,” J. Biomech. Eng., 121, pp. 629–635.
van Rietbergen,  B., Weinans,  H., Huiskes,  R., and Odgaard,  A., 1995, “A New Method to Determine Trabecular Bone Elastic Properties and Loading Using Micromechanical Finite-Element Models,” J. Biomech., 28, pp. 69–81.
Ladd,  A. J., and Kinney,  J. H., 1998, “Numerical Errors and Uncertainties in Finite-Element Modeling of Trabecular Bone,” J. Biomech., 31, pp. 941–945.
Keyak,  J. H., and Skinner,  H. B., 1992, “Three-Dimensional Finite Element Modeling of Bone: Effects of Element Size,” J. Biomech. Eng., 14, pp. 483–489.
Crawford,  R. P., Rosenberg,  W. S., and Keaveny,  T. M., 2003, “Quantitative Computed Tomography-Based Finite Element Models of the Human Lumbar Vertebral Body: Effect of Element Size on Stiffness, Damage, and Fracture Strength Predictions,” J. Biomech. Eng., 125, pp. 434–438.
Yeni,  Y. N., Hou,  F. J., Vashishth,  D., and Fyhrie,  D. P., 2001, “Trabecular Shear Stress in Human Vertebral Cancellous Bone: Intra- and Interindividual Variations,” J. Biomech., 34, pp. 1341–1346.
Yeni,  Y. N., Hou,  F. J., Ciarelli,  T., Vashishth,  D., and Fyhrie,  D. P., 2003, “Trabecular Shear Stresses Predict In Vivo Linear Microcrack Density but not Diffuse Damage in Human Vertebral Cancellous Bone,” Ann. Biomed. Eng., 31, pp. 726–732.
Fyhrie,  D. P., Hoshaw,  S. J., Hamid,  M. S., and Hou,  F. J., 2000, “Shear Stress Distribution in the Trabeculae of Human Vertebral Bone,” Ann. Biomed. Eng., 28, pp. 1194–1199.
Laib,  A., and Ruegsegger,  P., 1999, “Calibration of Trabecular Bone Structure Measurements of In Vivo Three-Dimensional Peripheral Quantitative Computed Tomography With 28-Micrometer-Resolution Microcomputed Tomography,” Bone (N.Y.), 24, pp. 35–39.
Jacobs,  C. R., Davis,  B. R., Rieger,  C. J., Francis,  J. J., Saad,  M., and Fyhrie,  D. P., 1999, “The Impact of Boundary Conditions and Mesh Size on the Accuracy of Cancellous Bone Tissue Modulus Determination Using Large-Scale Finite-Element Modeling,” J. Biomech., 32, pp. 1159–1164.
Reimann,  D. A., Hames,  S. M., Flynn,  M. J., and Fyhrie,  D. P., 1997, “A Cone Beam Computed Tomography System for True 3D Imaging of Specimens,” Appl. Radiat. Isot., 48, pp. 1433–1436.
Zauel, R., Yeni, Y. N., Christopherson, G. T., Cody, D. D., and Fyhrie, D. P., 2004, in 50th Annual Meeting, Orthopaedic Research Society 1018, San Francisco, Ca.
Hou,  F. J., Lang,  S. M., Hoshaw,  S. J., Reimann,  D. A., and Fyhrie,  D. P., 1998, “Human Vertebral Body Apparent and Hard Tissue Stiffness,” J. Biomech., 31, pp. 1009–1015.
Yeni,  Y. N., and Fyhrie,  D. P., 2001, “Finite Element Calculated Uniaxial Apparent Stiffness is a Consistent Predictor of Uniaxial Apparent Strength in Human Vertebral Cancellous Bone Tested With Different Boundary Conditions,” J. Biomech., 34, pp. 1649–1654.
Ladd,  A. J., Kinney,  J. H., Haupt,  D. L., and Goldstein,  S. A., 1998, “Finite-Element Modeling of Trabecular Bone: Comparison With Mechanical Testing and Determination of Tissue Modulus,” J. Orthop. Res., 16, pp. 622–628.
Bury, K., 1999, Statistical Distributions in Engineering, Cambridge University Press, Cambridge, UK.
Peyrin,  F., Salome,  M., Cloetens,  P., Laval-Jeantet,  A. M., Ritman,  E., and Ruegsegger,  P., 1998, “Micro-CT Examinations of Trabecular Bone Samples at Different Resolutions: 14, 7, and 2 Micron Level,” Technol. Health Care, 6, pp. 391–401.
Fyhrie,  D. P., and Schaffler,  M. B., 1994, “Failure Mechanisms in Human Vertebral Cancellous Bone,” Bone (N.Y.), 15, pp. 105–109.
Fyhrie,  D. P., and Vashishth,  D., 2000, “Bone Stiffness Predicts Strength Similarly for Human Vertebral Cancellous Bone in Compression and for Cortical Bone in Tension,” Bone (N.Y.), 26, pp. 169–173.
Kuhn,  J. L., Goldstein,  S. A., Feldkamp,  L. A., Goulet,  R. W., and Jesion,  G., 1990, “Evaluation of a Microcomputed Tomography System to Study Trabecular Bone Structure,” J. Orthop. Res., 8, pp. 833–842.
Ito,  M., Nakamura,  T., Matsumoto,  T., Tsurusaki,  K., and Hayashi,  K., 1998, “Analysis of Trabecular Microarchitecture of Human Iliac Bone Using Microcomputed Tomography in Patients With Hip Arthrosis With or Without Vertebral Fracture,” Bone (N.Y.), 23, pp. 163–169.
Hara,  T., Tanck,  E., Homminga,  J., and Huiskes,  R., 2002, “The Influence of Microcomputed Tomography Threshold Variations on the Assessment of Structural and Mechanical Trabecular Bone Properties,” Bone (N.Y.), 31, 107–109.
Ulrich,  D., van Rietbergen,  B., Weinans,  H., and Ruegsegger,  P., 1998, “Finite Element Analysis of Trabecular Bone Structure: A Comparison of Image-Based Meshing Techniques,” J. Biomech., 31, pp. 1187–1192.
Ding,  M., Odgaard,  A., and Hvid,  I., 1999, “Accuracy of Cancellous Bone Volume Fraction Measured by Micro-CT Scanning,” J. Biomech., 32, 323–326.
Homminga,  J., Huiskes,  R., Van Rietbergen,  B., Ruegsegger,  P., and Weinans,  H., 2001, “Introduction and Evaluation of a Gray-Value Voxel Conversion Technique,” J. Biomech., 34, pp. 513–517.
Yeni, Y. N., Vashishth, D., and Fyhrie, D. P., 2001, in Summer Bioengineering Conference, the American Society of Mechanical Engineers, ASME, N.Y., pp. 19–20.
Pistoia,  W., van Rietbergen,  B., Lochmuller,  E. M., Lill,  C. A., Eckstein,  F., and Ruegsegger,  P., 2002, “Estimation of Distal Radius Failure Load With Microfinite Element Analysis Models Based on Three-Dimensional Peripheral Quantitative Computed Tomography Images,” Bone (N.Y.), 30, 842–848.
Yeh,  O. C., and Keaveny,  T. M., 1999, “Biomechanical Effects of Intraspecimen Variations in Trabecular Architecture: A Three-Dimensional Finite Element Study,” Bone (N.Y.), 25, 223–228.
Pistoia,  W., van Rietbergen,  B., Laib,  A., and Ruegsegger,  P., 2001, “High-Resolution Three-Dimensional-pQCT Images can be an Adequate Basis for In Vivo MicroFE Analysis of Bone,” J. Biomech. Eng., 123, pp. 176–183.

Figures

Grahic Jump Location
Prediction of BV/TV calculated from 21/21 mm images by BV/TV calculated from other combinations of scan/reconstruction voxel size. All relationships are significant (Table 2).
Grahic Jump Location
Prediction of FE apparent modulus (E) calculated from 21/21 μm images by E calculated from other combinations of scan/reconstruction voxel size. All relationships except for 110/110 μm are significant (Table 2).
Grahic Jump Location
Prediction of the average trabecular von Mises stress (VMExp) calculated from 21/21 μm images by VMExp calculated from other combinations of scan/reconstruction voxel size. The 110/110 μm case is nonsignificant and the 50/110 μm case is only marginally significant (Table 2).
Grahic Jump Location
Prediction of the standard deviation of trabecular von Mises stress (VMSD) calculated from 21/21 μm images by VMSD calculated from other combinations of scan/reconstruction voxel size. All relationships are significant (Table 2).
Grahic Jump Location
Prediction of the coefficient of variation of trabecular von Mises stress (COV) calculated from 21/21 μm images by COV calculated from other combinations of scan/reconstruction voxel size. All relationships except for the 50/110 μm and 110/110 μm cases are significant (Table 2).
Grahic Jump Location
Prediction of the shear stress amplification (VMExp/σz) calculated from 21/21 μm images by VMExp/σz calculated from other combinations of scan/reconstruction voxel size. All relationships are significant (Table 2).

Tables

Errata

Discussions

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related Journal Articles
Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In