Cartilage Interstitial Fluid Load Support in Unconfined Compression Following Enzymatic Digestion

[+] Author and Article Information
Ines M. Basalo

Department of Mechanical Engineering, Columbia University, New York, NY 10027

Robert L. Mauck, Terri-Ann N. Kelly, Clark T. Hung

Department of Biomedical Engineering, Columbia University, New York, NY 10027

Steven B. Nicoll

Department of Bioengineering, University of Pennsylvania

Faye H. Chen

Department of Orthopedic Surgery, Columbia University, New York, NY 10032

Gerard A. Ateshian

Departments of Mechanical Engineering and Biomedical Engineering, Columbia University, New York, NY 10027

J Biomech Eng 126(6), 779-786 (Feb 04, 2005) (8 pages) doi:10.1115/1.1824123 History: Received September 23, 2003; Revised July 26, 2004; Online February 04, 2005
Copyright © 2004 by ASME
Your Session has timed out. Please sign back in to continue.


Mow, V. C., and Ratcliffe, A., 1997, “Structure and Function of Articular Cartilage and Meniscus,” Basic Orthopaedic Biomechanics, V. C. Mow and W. Hayes, eds., Lippincott-Raven Publishers, Philadelphia, pp. 113–177.
Mow,  V. C., Kuei,  S. C., Lai,  W. M., and Armstrong,  C. G., 1980, “Biphasic Creep and Stress Relaxation of Articular Cartilage in Compression? Theory and Experiments,” ASME J. Biomech. Eng., 102, pp. 73–84.
Macirowski,  T., Tepic,  S., and Mann,  R. W., 1994, “Cartilage Stresses in the Human Hip Joint,” ASME J. Biomech. Eng., 116, pp. 10–18.
Soltz,  M. A., and Ateshian,  G. A., 1998, “Experimental Verification and Theoretical Prediction of Cartilage Interstitial Fluid Pressurization at an Impermeable Contact Interface in Confined Compression,” J. Biomech., 31, pp. 927–934.
Ateshian,  G. A., Lai,  W. M., Zhu,  W. B., and Mow,  V. C., 1994, “An Asymptotic Solution for the Contact of Two Biphasic Cartilage Layers,” J. Biomech., 27, pp. 1347–1360.
Oloyede,  A., and Broom,  N., 1993, “Stress-Sharing Between the Fluid and Solid Components of Articular Cartilage under Varying Rates of Compression,” Connect. Tissue Res., 30, pp. 127–141.
McCutchen,  C. W., 1962, “The Frictional Properties of Animal Joints,” Wear, 5, pp. 1–17.
Ateshian,  G. A., 1997, “A Theoretical Formulation for Boundary Friction in Articular Cartilage,” ASME J. Biomech. Eng., 119, pp. 81–86.
Forster,  H., and Fisher,  J., 1996, “The Influence of Loading Time and Lubricant on the Friction of Articular Cartilage,” Proc. Inst. Mech. Eng., Part H: J. Eng. Med., 210, pp. 109–119.
Ateshian,  G. A., Wang,  H., and Lai,  W. M., 1998, “The Role of Interstitial Fluid Pressurization and Surface Porosities on the Boundary Friction of Articular Cartilage,” ASME J. Tribol., 120, pp. 241–251.
Krishnan,  R., Kopacz,  M., and Ateshian,  G. A., 2004, “Experimental Verification of the Role of Interstitial Fluid Pressurization in Cartilage Lubrication,” J. Orthop. Res., 22, pp. 565–570.
Park,  S., Krishnan,  R., Nicoll,  S. B., and Ateshian,  G. A., 2003, “Cartilage Interstitial Fluid Load Support in Unconfined Compression,” J. Biomech., 36, pp. 1785–1796.
Cohen,  B., Lai,  W. M., and Mow,  V. C., 1998, “A Transversely Isotropic Biphasic Model for Unconfined Compression of Growth Plate and Chondroepiphysis,” ASME J. Biomech. Eng., 120, pp. 491–496.
Soltz,  M. A., and Ateshian,  G. A., 2000, “A Conewise Linear Elasticity Mixture Model for the Analysis of Tension-Compression Nonlinearity in Articular Cartilage,” ASME J. Biomech. Eng., 122, pp. 576–586.
Soulhat,  J., Buschmann,  M. D., and Shirazi-Adl,  A., 1999, “A Fibril-Network-Reinforced Biphasic Model of Cartilage in Unconfined Compression,” ASME J. Biomech. Eng., 121, pp. 340–347.
Lyyra,  T., Arokoski,  J. P., Oksala,  N., Vihko,  A., Hyttinen,  M., Jurvelin,  J. S., and Kiviranta,  I., 1999, “Experimental Validation of Arthroscopic Cartilage Stiffness Measurement Using Enzymatically Degraded Cartilage Samples,” Phys. Med. Biol., 44, pp. 525–535.
Lotke,  P. A., and Granda,  J. L., 1972, “Alterations in the Permeability of Articular Cartilage by Proteolytic Enzymes,” Arthritis Rheum., 15, pp. 302–308.
Bonassar,  L. J., Frank,  E. H., Murray,  J. C., Paguio,  C. G., Moore,  V. L., Lark,  M. W., Sandy,  J. D., Wu,  J. J., Eyre,  D. R., and Grodzinsky,  A. J., 1995, “Changes in Cartilage Composition and Physical Properties Due to Stromelysin Degradation,” Arthritis Rheum., , 38, pp. 173–183.
Zhu,  W., Mow,  V. C., Koob,  T. J., and Eyre,  D. R., 1993, “Viscoelastic Shear Properties of Articular Cartilage and the Effects of Glycosidase Treatments,” J. Orthop. Res., 11, pp. 771–781.
Schmidt,  M. B., Mow,  V. C., Chun,  L. E., and Eyre,  D. R., 1990, “Effects of Proteoglycan Extraction on the Tensile Behavior of Articular Cartilage,” J. Orthop. Res., 8, pp. 353–363.
Korhonen,  R. K., Laasanen,  M. S., Toyras,  J., Lappalainen,  R., H.J.  H., and Jurvelin,  J. S., 2003, “Fibril Reinforced Poroelastic Model Predicts Specifically Mechanical Behavior of Normal, Proteoglycan Depleted and Collagen Degraded Articular Cartilage,” J. Biomech., in press.
Farndale,  R. W., Sayers,  C. A., and Barrett,  A. J., 1982, “A Direct Spectrophotometric Microassay for Sulfated Glycosaminoglycans in Cartilage Cultures,” Connect. Tissue Res., 9, pp. 247–248.
Stegeman,  H., and Stalder,  K., 1967, “Determination of Hydroxyproline,” Clin. Chim. Acta, 19, pp. 267–273.
Williamson,  A. K., Chen,  A. C., and Sah,  R. L., 2001, “Compressive Properties and Function-Composition Relationships of Developing Bovine Articular Cartilage,” J. Orthop. Res., 19, pp. 1113–1121.
Waggett,  A. D., Ralphs,  J. R., Kwan,  A. P., Woodnutt,  D., and Benjamin,  M., 1998, “Characterization of Collagens and Proteoglycans at the Insertion of the Human Achilles Tendon,” Matrix Biol., 16, pp. 457–470.
Lin,  W., Shuster,  S., Maibach,  H. I., and Stern,  R., 1997, “Patterns of Hyaluronan Staining Are Modified by Fixation Techniques,” J. Histochem. Cytochem., 45, pp. 1157–1163.
Huang,  C. Y., Mow,  V. C., and Ateshian,  G. A., 2001, “The Role of Flow-Independent Viscoelasticity in the Biphasic Tensile and Compressive Responses of Articular Cartilage,” ASME J. Biomech. Eng., 123, pp. 410–417.
Krishnan,  R., Park,  S., Eckstein,  F., and Ateshian,  G. A., 2003, “Inhomogeneous Cartilage Properties Enhance Superficial Interstitial Fluid Support and Frictional Properties, but Do Not Provide a Homogeneous State of Stress,” ASME J. Biomech. Eng., 125, pp. 569–577.
Toyras,  J., Rieppo,  J., Nieminen,  M. T., Helminen,  H. J., and Jurvelin,  J. S., 1999, “Characterization of Enzymatically Induced Degradation of Articular Cartilage Using High Frequency Ultrasound,” Phys. Med. Biol., 44, pp. 2723–2733.
Basalo,  I. M., Raj,  D., Krishnan,  R., Chen,  F. H., Hung,  C. T., and Ateshian,  G. A., “Effects of Enzymatic Degradation on the Frictional Response of Articular Cartilage in Stress Relaxation,” J. Biomech., in press.
Kwan,  M. K., Lai,  W. M., and Mow,  V. C., 1990, “A Finite Deformation Theory for Cartilage and Other Soft Hydrated Connective Tissues—I. Equilibrium Results,” J. Biomech., 23, pp. 145–155.
Ateshian,  G. A., Warden,  W. H., Kim,  J. J., Grelsamer,  R. P., and Mow,  V. C., 1997, “Finite Deformation Biphasic Material Properties of Bovine Articular Cartilage from Confined Compression Experiments,” J. Biomech., 30, pp. 1157–1164.
Oloyede,  A., and Broom,  N., 1994, “Complex Nature of Stress inside Loaded Articular Cartilage,” Clin. Biomech. (Los Angel. Calif.), 9, pp. 149–156.
Armstrong,  C. G., Lai,  W. M., and Mow,  V. C., 1984, “An Analysis of the Unconfined Compression of Articular Cartilage,” ASME J. Biomech. Eng., 106, pp. 165–173.


Grahic Jump Location
Diagram of the unconfined compression testing chamber
Grahic Jump Location
Typical response of (a) W(t) and Wp(t) and (b) plot of Wp(t) versus W(t) during the loading phase before enzymatic treatment
Grahic Jump Location
Typical response of (a) W(t) and Wp(t) and (b) plot of Wp(t) versus W(t) during the loading phase after treatment with chondroitinase ABC
Grahic Jump Location
Summary of peak fluid load support for loaded treatment groups and their respective controls: (a) Collagenase groups; (b) chondroitinase ABC groups
Grahic Jump Location
Histological sections stained for type II collagen (magnification 10X) for (a) a PBS loaded control specimen, and specimens treated with (b) 0.7 u/mg wet-weight and (c) 1.0 u/mg wet-weight of collagenase (bar=100 μm)



Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related Journal Articles
Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In