0
TECHNICAL PAPERS: Fluids/Heat/Transport

Time-Resolved DPIV Analysis of Vortex Dynamics in a Left Ventricular Model Through Bileaflet Mechanical and Porcine Heart Valve Prostheses

[+] Author and Article Information
Olga Pierrakos, Pavlos P. Vlachos

Department of Mechanical Engineering School of Biomedical Engineering

Demetri P. Telionis

Department of Engineering Science and Mechanics School of Biomedical Engineering and Sciences Virginia Tech, 219 Norris Hall Blacksburg, VA 24061

J Biomech Eng 126(6), 714-726 (Feb 04, 2005) (13 pages) doi:10.1115/1.1824124 History: Received April 17, 2003; Revised June 08, 2004; Online February 04, 2005
Copyright © 2004 by ASME
Your Session has timed out. Please sign back in to continue.

References

Bronzino, Joseph D., 1999, The Biomedical Engineering Handbook, 2nd ed., CRC Press, Boca Raton, Vol. I, Chap. 29, pp. 1–15.
Edmunds,  Henry I., 2001, “Evolution of Prosthetic Heart Valves,” Am. Heart J., 141, pp. 849–855.
Hammermeister,  K., Sethi,  G. K., Henderson,  W. G., Grover,  F. L., Oprian,  C., and Rahimtoola,  S. H., 2000, “Outcome 15 Years After Valve Replacement With a Mechanical Versus a Bioprosthetic Valve: Final Report of the Veterans Affairs Randomized Trial,” J. Am. Coll. Cardiol., 36(4), pp. 1152–1158.
Chandran,  K. B., Cabell,  G. N., Khalighi,  B., and Chen,  C. J., 1983, “Laser Anemometry Measurements of Pulsatile Flow Past Aortic Valve Prostheses,” J. Biomech., 16(10), pp. 865–873.
Chandran,  K. B., Khaloghi,  B., and Chen,  C. J., 1985, “Experimental Study of Physiological Pulsatile Flow Past Valve Prostheses in a Model of Human Aorta. I. Caged Ball Valves,” J. Biomech., 18(10), pp. 763–772.
Reul,  H., Giersiepen,  M., Schindehutte,  H., Effert,  S., and Rau,  G., 1986, “Comparative in Vitro Evaluation of Porcine and Pericardial Bioprostheses,” Z. Kardiol., 75(Suppl. 2), pp. 223–231.
Bruss,  K. H., Reul,  H., Van Gilse,  J., and Knott,  E., 1983, “Pressure Drop and Velocity Fields at Four Mechanical Heart Valve Prostheses: Bjork-Shiley Standard, Bjork-Shiley Concave-Convex, Hall-Kaster and St-Jude Medical,” Life Support Syst., 1, pp. 3–22.
Giersiepen,  M., Reul,  H., Knoch,  M., and Rau,  G., 1986, “Pressure Drop and Velocity Fields at Mechanical Heart Valves,” Life Support Syst., 4(Suppl. 2), pp. 166–168.
Yoganathan,  A. P., Woo,  Y., and Sung,  H., 1986, “Turbulent Shear Stress Measurements in the Vicinity of Aortic Heart Valve Prostheses,” J. Biomech., 19(6), pp. 433–442.
Hasenkam,  J. M., Westphal,  D., Wygaard,  H., Reul,  H., Giersiepen,  M., and Stodkilde-Jorgensen,  H., 1988, “In Vitro Stress Measurements in the Vicinity of Six Mechanical Aortic Valves Using Hot-Film Anemometry in Steady Flow,” J. Biomech., 21, pp. 235–247.
Hanle,  D. D., Harrison,  E. C., Yoganathan,  A. P., Alens,  D. T., and Corocran,  W. H., 1989, “In Vitro Flow Dynamics of Four Prosthetic Aortic Valves: A Comparative Analysis,” J. Biomech., 22, pp. 597–607.
Giersiepen,  M., Krause,  U., Knott,  E., Reul,  H., and Rau,  G., 1989, “Velocity and Shear Stress Distribution Downstream of Mechanical Heart Valves in Pulsatile Flow,” Int. J. Artif. Organs, 12(4), pp. 261–269.
Tonietto, G, 1990, “Etude experimentale et numerique des ecoulements post-valvulaires.” These de Doctorat, Universite. Aix-Marseille II, Institut de Mecanique des Fluides de Marseille.
Lim,  W. L., Chew,  Y. T., Chew,  T. C., and Low,  H. T., 1994, “Particle Image Velocimetry in the Investigation of Flow Past Artificial Heart Valves,” Ann. Biomed. Eng., 22, pp. 307–318.
Bellhouse,  B. J., and Bellhouse,  F. H., 1969, “Fluid Mechanics of the Mitral Valve,” Nature (London), 224, pp. 615–616.
Bellhouse,  B. J., 1972, “Fluid Mechanics of a Model Mitral Valve and Left Ventricle,” Cardiovasc. Res., 6, pp. 199–210.
Woo,  Y., and Yoganathan,  A. P., 1986, “In Vitro Pulsatile Flow Velocity and Shear Stress Measurements in the Vicinity of Mechanical Mitral Heart Valve Prostheses,” J. Biomech., 19(6), pp. 39–51.
Chandran,  K. B., Schoephoerster,  R., and Dellesperger,  K. C., 1989, “Effect of Prosthetic Mitral Valve Geometry and Orientation on Flow Dynamics in a Model of Human Left Ventricle,” J. Biomech., 22(1), pp. 51–65.
Schoephoerster,  R. T., Oynes,  F., Numez,  H., Kapadvanjwala,  M., and Dewanjee,  M. K., 1993, “Effects of Local Geometry and Fluid Dynamics on Regional Platelet Deposition on Artificial Surfaces,” Arterioscler. Thromb., 12, pp. 1806–1813.
Schoephoerster,  R. T., and Chandran,  K. B., 1991, “Velocity and Turbulence Measurements Past Mitral Valve Prostheses in a Model Left Ventricle,” J. Biomech., 24(7), pp. 549–562.
Lemmon,  D., and Yoganathan,  A. P., 2000, “Three-Dimensional Computational Model of Left Heart Diastolic Function With Fluid-Structure Interaction,” ASME J. Biomech. Eng., 122, pp. 109–117.
Garitey,  V., Gandelheid,  T., Fusezi,  J., Pelissier,  R., and Rieu,  R., 1995, “Ventricular Flow Dynamic Past Bileaflet Prosthetic Heart Valves,” Int. J. Artif. Organs, 18(7), pp. 380–391.
Bluestein,  D., Rambod,  E., and Gharib,  M., 2000, “Vortex Shedding as a Mechanism for Free Emboli Formation in Mechanical Heart Valves,” J. Biomech. Eng., 122, pp. 125–134.
Kleine,  P., Perthel,  M., Hasenkam,  J. M., Nygaard,  H., Hansen,  S. B., and Laas,  J., 1999, “High-Intensity Transient Signals (HITS) as a Parameter for Optimum Orientation of Mechanical Aortic Valves,” Thorac. Cardiovasc. Surg., 48, pp. 360–363.
Laas,  J., Kleine,  P., Hasenkam,  M. J., and Nygaard,  H., 1999, “Orientation of Tilting Disc and Bileaflet Aortic Valve Substitutes for Optimal Hemodynamics,” Ann. Thorac. Surg., 68, pp. 1096–1099.
Fontaine,  A. A., Shengqiu,  H., Stadter,  R., Ellis,  J. T., Levine,  R. A., and Yoganathan,  A. P., 1996, “In Vitro Assessment of Prosthetic Valve Function in Mitral Valve Replacement With Chordal Preservation Techniques,” J. Heart Valve Dis., 5(2), pp. 186–198.
Panton, R. L., 1996, Incompressible Flow, 2nd ed., Wiley-Interscience, London, Chichester, Brisbane, p. 462.
Reul,  H., Talukder,  N., and Müller,  E. W., 1981, “Fluid Mechanics of the Natural Mitral Valve,” J. Biomech., 14(5), pp. 361–372.
Gross,  J. M., Shermer,  C. D., and Hwang,  H. C., 1988, “Vortex Shedding in Bileaflet Heart Valve Prosthesis,” Trans. Am. Soc. Artif. Intern. Organs, 34, pp. 845–850.
Liu,  J. S., Lu,  P. C., and Chu,  S. H., 1996, “Pulsatile Flow Past Bileaflet Aortic Valve Prostheses,” J. Chin. Inst. Eng., 19, pp. 333–344.
Mouret,  F., Garitey,  V., Gandelheid,  T., Fuseri,  R., and Rieu,  R., 2000, “A New Dual Activation Simulator of the Left Heart Which Reproduces Physiological and Pathological Conditions,” Med. Biol. Eng. Comput., 38, pp. 558–561.
Bronzino, J. D., 1999, The Biomedical Engineering Handbook, 2nd ed., CRC Press, Boca Raton, Vol. I, Chap. 1.
Reul,  H., van Son Jacques,  A. M., Steinseifer,  U., Schmitz,  B., Schmidt,  A., Schmitz,  C., and Rau,  G., 1993, “In Vitro Comparison of Bileaflet Aortic Heart Valve Prostheses-St. Jude Medical, Carbomedics, Modified Edwards-Duromedics and Sorin-Bicarbon Valves,” J. Thorac. Cardiovasc. Surg., 106, pp. 412–420.
Willert,  C. E., and Gharib,  M., 1991, “Digital Particle Image Velocimetry,” Exp. Fluids, 10, pp. 181–193.
Westerweel, J., 1993, Digital Particle Image Velocimetry, Theory and Application. Delft University Press, Delft.
Huang, H. T., and Gharib, M., 1993, “Processing Error in Digital Particle Image Velocimetry,” FEDSM97-3068.
Vlachos, P. P., and Telionis, D. P., “Turbulence Characteristics In The Wake Of A Circular Cylinder Near The Free Surface,” FEDSM2000-11320, Boston, MA, 2000.
Abiven, C., and Vlachos, P. P., 2002, “Comparative Study of Established DPIV Algorithms for Planar Velocity Measurements,” ASME IMECE-33170, New Orleans, LA.
Abiven, C., and Vlachos, P. P., 2002, “Super Spatio-Temporal Resolution, Digital, PIV System for Multi-Phase Flows With Phase Differentiation and Simultaneous Shape and Size Quantification,” ASME IMECE-33115, New Orleans, LA.
Lele, S. K., April 1990, “Compact Finite Difference Schemes With Spectral-Like Resolution,” CTR Manuscript 107, NASA Technical Reports.
Laas, J., Perthel, M., Aiken, A., and Kivelitz, D., 2000, “Intraventricular Flow in the Normal Heart and After Mitral Valve Replacement,” (Video) Kurt Singel Mann, Videostudio MHH.
Yuji,  O., Okamoto,  K., Sonderegger,  M., Dohi,  T., Matsumoto,  H., and Horiuchi,  T., 1997, “Nonsymmetric Leaflet Motion of St. Jude Medical Mitral Valves Simulated With a Computer-Controlled Hydraulic Mock Circulator,” Artif. Organs, 21(4), pp. 335–339.
Kilner,  P. J., Yang,  G.-Z., Wilkes,  A. J., Mohladin,  R. H., Firmin,  D. N., and Yacoub,  M. H., 2000, “Asymmetric Redirection of Flow Through the Heart,” Nature (London), 404, pp. 759–761.
Gharib,  M., Rambod,  E., and Shariff,  K., 1998, “A Universal Time Scale for Vortex Ring Formation,” J. Fluid Mech., 360, pp. 121–140.
Tennekes, H., February 1972, A First Course in Turbulence, MIT Press, Cambridge, MA.
Batchelor, G. K., 1982, Theory of Homogeneous Turbulence, Cambridge University Press, Cambridge.
Kolmogorov, A. N., 1947, “Statistical Theory of Oscillations With Continuous Spectrum,” Anniversary Collection of Papers, Acad. Sci. U.S.S.R. Press, Moscow.

Figures

Grahic Jump Location
Schematic of domain segmentation observed in all three configurations. Locations of regions I, II, and III are shown as well are vortices A and B.
Grahic Jump Location
Time-varying results of streamline distributions for the anti-anatomical orientation. The time instants are T=0, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, and 0.9 s. For the first three time instants, the specified regions have been enlarged to show the velocity field and vorticity distribution.
Grahic Jump Location
Time-varying results of streamline distributions for the porcine configuration. The time instants are T=0, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, and 0.9 s. For the first three time instants, the specified regions have been enlarged to show the velocity field and vorticity distribution.
Grahic Jump Location
(a) Schematic of the mock circulatory loop showing locations for flow rate sensors and pressure transducers; (b) flow rate waveform downstream of the aortic valve; (c) pressure waveform downstream of the aortic valve
Grahic Jump Location
The two St. Jude Medical bileaflet mechanical heart valve orientations studied: (a) anatomical (leaflets open similar to the natural mitral leaflets) and (b) anti-anatomical (leaflets perpendicular to the natural mitral leaflets, therefore, 90 deg clockwise of the anatomical orientation). (c) Location of the five planes along the span of the LV. Results and data analysis of plane 1, center plane dividing the LV in half, is presented in this paper.
Grahic Jump Location
Time-averaged vorticity contours (a)–(c) and velocity distributions (d)–(f) over one heart cycle for the three configurations, respectively (a) and (d) anatomical, (b) and (e) anti-anatomical, and (c) and (f) porcine
Grahic Jump Location
Plot of instantaneous, nondimensional circulation (left) for one heart cycle calculated over the rectangular area upstream of the AV (right) for the three cases of anatomical, anti-anatomical, and porcine configurations
Grahic Jump Location
Time-varying results of streamline distributions for the anatomical orientation. The time instants are T=0, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, and 0.9 s. For the first three time instants, the specified regions have been enlarged to show the velocity field and vorticity distribution. Please note that in the electronic version of the paper, the figures can be enlarged so that the information provided can be studied in greater detail.
Grahic Jump Location
Schematic of the flow inside the natural left ventricle (LV). (a) A symmetric inlet vortex distribution; (b) actual vortical field entering the LV and the redirection of the flow in accordance to the shape of the LV.
Grahic Jump Location
(a) Anticipated flow field for a symmetric mitral jet past a SJM MHV. (b) Actual observed flow field past SJM MHVs in the LV via TRDPIV, the schematic serves to illustrate the underlying physics of the Biot–Savart law.

Tables

Errata

Discussions

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related Journal Articles
Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In