Local, Three-Dimensional Strain Measurements Within Largely Deformed Extracellular Matrix Constructs

[+] Author and Article Information
Blayne A. Roeder, Klod Kokini

Department of Biomedical Engineering, Purdue University, 500 Central Drive, West Lafayette, IN 47907-2022 School of Mechanical Engineering, Purdue University, 585 Purdue Mall, West Lafayette, IN 47907-2088

J. Paul Robinson, Sherry L. Voytik-Harbin

Department of Biomedical Engineering, Purdue University, 500 Central Drive, West Lafayette, IN 47907-2022, USAand Department of Basic Medical Sciences, Purdue University, 625 Harrison Street, West Lafayette, IN 47907-2026

J Biomech Eng 126(6), 699-708 (Feb 04, 2005) (10 pages) doi:10.1115/1.1824127 History: Received January 06, 2004; Revised June 10, 2004; Online February 04, 2005
Copyright © 2004 by ASME
Your Session has timed out. Please sign back in to continue.


Brown,  T. D., 2000, “Techniques for Mechanical Stimulation of Cells In Vitro: A Review,” J. Biomech., 33, pp. 3–14.
Tomasek,  J. J., Gabbiani,  G., Hinz,  B., Chaponnier,  C., and Brown,  R. A., 2002, “Myofibroblasts and Mechanoregulation of Connective Tissue Remodeling,” Nat. Rev. Mol. Cell Biol.,3, pp. 349–363.
Roy,  P., Rajfur,  Z., Pomorski,  P., and Jacobson,  K., 2002, “Microscope-Based Techniques to Study Cell Adhesion and Migration,” Nat. Cell Biol., 4, pp. E91–E96.
Harris,  A. K., Wild,  P., and Stopak,  D., 1980, “Silicone Rubber Substrata: A New Wrinkle in the Study of Cell Locomotion,” Science, 208, pp. 177–179.
Pelham,  R. J., and Wang,  Y.-L., 1997, “Cell Locomotion and Focal Adhesions are Regulated by Substrate Flexibility,” Proc. Natl. Acad. Sci. U.S.A., 94, pp. 13661–13665.
Roy,  P., Petroll,  W. M., Cavanagh,  H. D., Chuong,  C. J., and Jester,  J. V., 1997, “An In Vitro Force Measurement Assay to Study the Early Mechanical Interaction Between Corneal Fibroblasts and Collagen Matrix,” Exp. Cell Res., 232, pp. 106–117.
Fung, Y. C., 1993, Biomechanics: Mechanical Properties of Living Tissues, Springer-Verlag, New York.
Eastwood,  M., Mudera,  V. C., McGrouther,  D. A., and Brown,  R. A., 1998, “Effect of Precise Mechanical Loading on Fibroblasts Populated Collagen Lattices: Morphological Changes,” Cell Motil. Cytoskeleton, 40, pp. 13–21.
Butt,  R. O., Laurent,  G. J., and Bishop,  J. E., 1995, “Mechanical Load and Polypeptide Growth Factors Stimulate Cardiac Fibroblasts Activity,” Ann. N.Y. Acad. Sci., 752, pp. 387–393.
Varedi,  M., Tredget,  E. E., Ghahary,  A., and Scott,  P. G., 2000, “Stress-Relaxation and Contraction of a Collagen Matrix Induces Expression of TGF-Beta and Triggers Apoptosis in Dermal Fibroblasts,” Biochem. Cell Biol., 78, pp. 427–436.
He,  Y., and Grinnell,  F., 1994, “Stress Relaxation of Fibroblasts Activates a Cyclic AMP Signaling Pathway,” J. Cell Biol., 126, pp. 457–464.
Carver,  W., Nagpal,  M. L., Nachtigal,  M., Borg,  T. K., and Terracio,  L., 1991, “Collagen Expression in Mechanically Stimulated Cardiac Fibroblasts,” Circ. Res., 69, pp. 116–122.
Lambert,  C. A., Soudant,  E. P., Nusgens,  B. V., and Lapiere,  C. M., 1992, “Pretranslational Regulation of Extracellular Matrix Molecules and Collagenase Expression in Fibroblasts by Mechanical Forces,” Lab. Invest., 66, pp. 444–451.
Chiquet-Ehrismann,  R., Tannheimer,  M., Koch,  M., Brunner,  A., Spring,  J., and Martin,  D., 1994, “Tenascin C Expression by Fibroblasts is Elevated in Stressed Collagen Gels,” J. Cell Biol., 127, pp. 2093–2101.
Prajapati,  R. T., Chavally-Mis,  B., Herbage,  D., Eastwood,  M., and Brown,  R. A., 2000, “Mechanical Loading Regulates Protease Production by Fibroblasts in Three-Dimensional Collagen Substrates,” Wound Repair Regen, 8, pp. 226–237.
Kessler,  D., Dethlefsen,  S. W., Haases,  I., Plomann,  M., Hirche,  F., Krieg,  T., and Eckes,  B., 2001, “Fibroblasts in Mechanically Stressed Collagen Lattices Assume a “Synthetic” Phenotype,” J. Biol. Chem., 276, pp. 36575–36585.
Mow, V. C., Bachrach, N. M., Setton, L. A., and Guilak, F., 1994, “Stress, Strain, Pressure and Flow Fields in Articular Cartilage and Chondrocytes,” Cell Mechanics and Cellular Engineering, Mow, V. C., Guilak, F., Tran-Son-Tay, R., and Hochmuth, R. M. eds., Springer-Verlag, New York, pp. 345–379.
Guilak,  F., 1994, “Volume and Surface Area Measurement of Viable Chondrocytes in Situ Using Geometric Modeling of Serial Confocal Sections,” J. Microsc. (Paris), 173, pp. 245–256.
Guilak,  F., Ratcliff,  A., and Mow,  V. C., 1995, “Chondrocyte Deformation and Local Tissue Strain in Articular Cartilage: A Confocal Microscopy Study,” J. Orthop. Res., 13, pp. 410–442.
Lee,  D. A., Knight,  M. M., Bolton,  J. F., Idowu,  B. D., Kayser,  M. V., and Bader,  D. L., 2000, “Chondrocyte Deformation Within Compressed Agarose Constructs at the Cellular and Subcellular Levels,” J. Biomech., 33, pp. 81–95.
Knight,  M. M., van de Breevaart Bravenboer,  J., Lee,  D. A., van Osch,  G. J. V. M., Weinans,  H., and Bader,  D. L., 2002, “Cell and Nucleus Deformation in Compressed Chrondrocyte-Alginate Constructs: Temporal Changes and Calculation of Cell Modulus,” Biochim. Biophys. Acta, 1570, pp. 1–8.
Brightman,  A. O., Rajwa,  B. P., Sturgis,  J. E., McCallister,  M. E., Robinson,  J. P., and Voytik-Harbin,  S. L., 2000, “Time-Lapse Confocal Reflection Microscopy of Collagen Fibrillogenesis and Extracellular Matrix Assembly In Vitro,” Biopolymers, 54, pp. 222–234.
Voytik-Harbin,  S. L., Rajwa,  B. P., and Robinson,  J. P., 2001, “3D Imaging of ECM and ECM-Cell Interactions,” Methods Cell Biol., 63, pp. 583–596.
Roeder,  B. A., Kokini,  K., Sturgis,  J. E., Robinson,  J. P., and Voytik-Harbin,  S. L., 2002, “Tensile Mechanical Properties of Three-Dimensional Type I Collagen Extracellular Matrices With Varied Microstructure,” J. Biomech. Eng., 124, pp. 214–222.
Voytik-Harbin,  S. L., Roeder,  B. A., Sturgis,  J. E., Kokini,  K., and Robinson,  J. P., 2003, “Simultaneous Mechanical Loading and Confocal Reflection Microscopy for 3D Microbiomechanical Analysis of Biomaterials and Tissue Constructs,” Microsc. Microanal., 9(1), pp. 74–85.
Chu,  T. C., Ranson,  W. F., Sutton,  M. A., and Peters,  W. H., 1985, “Applications of Digital-Image-Correlation Techniques to Experimental Mechanics,” Exp. Mech., 25, pp. 232–244.
Kahn-Jetter,  Z. L., Jha,  N. K., and Bhatia,  H., 1994, “Optimal Image Correlation in Experimental Mechanics,” Opt. Eng., 33, pp. 1099–1105.
Lyons,  J. S., Liu,  J., and Sutton,  M. A., 1996, “High-Temperature Deformation Measurements Using Digital-Image Correlation,” Exp. Mech., 36, pp. 64–70.
McNeill,  S. R., Peters,  W. H., and Sutton,  M. A., 1987, “Estimation of Stress Intensity Factor by Digital Image Correlation,” Eng. Fract. Mech., 28, pp. 101–112.
Lee,  J., Leonard,  M., Oliver,  T., Ishihara,  A., and Jacobson,  K., 1994, “Traction Forces Generated by Locomoting Keratocytes,” J. Cell Biol., 127, pp. 1957–1964.
Dembo,  M., and Wang,  Y. L., 1999, “Stresses at the Cell-to-Substrate Interface During Locomotion of Fibroblasts,” Biophys. J., 76(4), pp. 2307–2316.
Pelham,  R. J., and Wang,  Y.-L., 1999, “High Resolution Detection of Mechanical Forces Exerted by Locomoting Fibroblasts on the Substrate,” Mol. Biol. Cell, 10, pp. 935–945.
Tolic-Norrelykke,  I. V., Butler,  J. P., Chen,  J., and Wang,  N., 2002, “Spatial and Temporal Traction Response in Human Airway Smooth Muscle Cells,” Am. J. Phys. Cell Physiol.,283, pp. C1254–C1266.
Wang,  C. C.-B., Deng,  J.-M., Athesian,  G. A., and Hung,  C. T., 2002, “An Automated Approach for Direct Measurement of Two-Dimensional Strain Distributions Within Articular Cartilage Under Unconfined Compression,” J. Biomech. Eng., 124, pp. 557–567.
Bay,  B. K., Smith,  T. S., Fyhrie,  D. P., and Saad,  M., 1999, “Digital Volume Correlation: Three-Dimensional Strain Mapping Using X-Ray Tomography,” Exp. Mech., 39, pp. 217–226.
Smith,  T. S., Bay,  B. K., and Rashid,  M. M., 2002, “Digital Volume Correlation Including Rotational Degrees of Freedom During Minimization,” Exp. Mech., 42(3), pp. 272–278.
Raffel, M., Willert, C., and Kompenhans, J., 1998, Particle Image Velocimetry: A Practical Guide, Springer-Verlag, Berlin.
Hoffman, J. D., 1992, Numerical Methods for Engineers and Scientists, McGraw-Hill, New York.
Pawley, J. B., 1995, Handbook of Biological Confocal Microscopy, 2nd ed., Plenum Press, New York.
Barocas, V. H., and Tranquillo, R. T., 1994, “Biphasic Theory and In Vitro Assays of Cell-Fibril Interaction in Tissue-Equivalent Gels,” Cell Mechanics and Cellular Engineering, Mow, V. C., Guilak, F., Tran-Son-Tay, R., and Hockmuth, R. M., eds., Springer-Verlag, New York, pp. 185–209.
Barocas,  V. H., and Tranquillo,  R. T., 1997, “A Finite Element Solution for the Anisotropic Biphasic Theory of Tissue-Equivalent Mechanics: The Effect of Contact Guidance on Isometric Cell Traction Measurement,” J. Biomech. Eng., 119, pp. 137–145.
Barocas,  V. H., and Tranquillo,  R. T., 1997, “An Anisotropic Biphasic Theory of Tissue-Equivalent Mechanics: The Interplay Among Cell Traction, Fibrillar Network Deformation, Fibril Alignment and Cell Contact Guidance,” J. Biomech. Eng., 119, pp. 261–268.
Agoram,  B., and Barocas,  V. H., 2001, “Coupled Macroscopic and Microscopic Scale Modeling of Fibrillar Tissues and Tissue Equivalents,” J. Biomech. Eng., 123, pp. 362–369.
Zhalak,  G. I., Wagenseil,  J. E., Wakatsuki,  T., and Elson,  E. L., 2000, “A Cell-Based Constitutive Relation for Bio-Artificial Tissues,” Biophys. J., 79, pp. 2369–2381.
Breuls,  R. G. M., Sengers,  B. G., Oomens,  C. W. J., Bouten,  C. V. C., and Baaijens,  F. P. T., 2002, “Predicting Local Cell Deformation in Engineered Tissue Constructs: A Multilevel Finite Element Approach,” J. Biomech. Eng., 124, pp. 198–207.
Mow, V. C., Kwan, M. K., Lai, W. M., and Holmes, M. H., 1994, “A Finite Deformation Theory for Nonlinearly Permeable Soft Hydrated Biological Tissues,” Frontiers in Biomechanics, Schmid-Schoenbein, G. W., Woo, S. L.-Y., and Zweifach, B. W., eds., Springer-Verlag, New York, pp. 153–179.
Wren,  T. A. L., and Carter,  D. R., 1998, “A Microstructural Model for the Tensile Constitutive Failure Behavior of Soft Skeletal Connective Tissues,” J. Biomech. Eng., 120, pp. 55–61.
Guilak,  F., and Mow,  V. C., 2000, “The Mechanical Environment of the Chondrocytes: A Biphasic Finite Element Model of Cell-Matrix Interactions in Articular Cartilage,” J. Biomech., 33, pp. 1663–1673.
Billiar,  K. L., and Sacks,  M. S., 1997, “A Method to Quantify the Fiber Kinematics of Planar Tissues Under Biaxial Stretch,” J. Biomech., 30, pp. 753–756.


Grahic Jump Location
The effect of filtering on displacement measurement precision (standard deviation) as a function of subvolume size. Correlation values obtained for individual subvolumes were selectively removed based upon defined signal to noise ratio.
Grahic Jump Location
A series of 3D confocal reflection images (shown as 2D projections) representing a correlated subvolume within a collagen ECM during incremental mechanical loading as tracked by the IVDC algorithm
Grahic Jump Location
Progressive volumetric deformation and changes in the microlevel strain distribution for a region within a mechanically loaded collagen ECM. Maximum principle strain (extensional stretch) is plotted on the contour for applied macro level strains of (a) 0; (b) 0.1; (c) 0.2; and (d) 0.3. Original image represents a 100×100×25 μm3 volume within the collagen ECM.
Grahic Jump Location
Changes in the six independent components of the Lagrangian strain (means over the entire volume evaluated) as the external mechanical load was incrementally increased. Error bars indicate standard deviation.



Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related Journal Articles
Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In