Anisotropic Mechanical Properties of Tissue Components in Human Atherosclerotic Plaques

[+] Author and Article Information
Gerhard A. Holzapfel, Gerhard Sommer

  Graz University of Technology, Institute for Structural Analysis, Computational Biomechanics, Schiesstattgasse 14-B, 8010 Graz, Austria

Peter Regitnig

Medical University Graz, Institute of Pathology, Auenbruggerplatz 25, 8036 Graz, Austria

J Biomech Eng 126(5), 657-665 (Nov 23, 2004) (9 pages) doi:10.1115/1.1800557 History: Received February 16, 2004; Revised April 16, 2004; Online November 23, 2004
Copyright © 2004 by ASME
Your Session has timed out. Please sign back in to continue.


Fuster, V., editor, 2002, Assessing and Modifying the Vulnerable Atherosclerotic Plaque: American Heart Association, Futura Publishing Company, Armonk.
Kramer,  C. M., 2002, “Magnetic Resonance Imaging to Identify the High-Risk Plaque,” Am. J. Cardiol., 90, pp. 15L–17L.
Virmani,  R., Burke,  A. P., Kolodgie,  F. D., and Farb,  A., 2003, “Pathology of the Thin-Cap Fibroatheroma: A Type of Vulnerable Plaque,” J. Invas. Cardiol.,16, pp. 267–272.
Kavey,  R. W., Daniels,  S. R., Lauer,  R. M., Atkins,  D. L., Hayman,  L. L., and Taubert,  K., 2003, “American Heart Association Guidelines for Primary Prevention of Atherosclerotic Cardiovascular Disease Beginning in Childhood,” Circulation, 107, pp. 1562–1566.
Rayner, M., and Petersen, S., 2000, European Cardiovascular Disease Statistics 2000, British Heart Foundation (BHF), London.
Holzapfel,  G. A., Stadler,  M., and Schulze-Bauer,  C. A. J., 2002, “A Layer-Specific Three-Dimensional Model for the Simulation of Balloon Angioplasty Using Magnetic Resonance Imaging and Mechanical Testing,” Ann. Biomed. Eng., 30, pp. 753–767.
Richardson,  P. D., 2002, “Biomechanics of Plaque Rupture: Progress, Problems, and New Frontiers,” Ann. Biomed. Eng., 30, pp. 524–536.
Salunke,  N. V., and Topoleski,  L. D. T., 1997, “Biomechanics of Atherosclerotic Plaque,” Crit. Rev. Biomed. Eng., 25, pp. 243–285.
Humphrey, J. D., 2002, Cardiovascular Solid Mechanics: Cells, Tissues, and Organs, Springer-Verlag, New York.
Lendon,  C. L., Briggs,  A. D., Born,  G. V. R., Burleigh,  M. C., and Davies,  M. J., 1988, “Mechanical Testing of Connective Tissue in the Search for Determinants of Atherosclerotic Plaque Cap Rupture,” Biochem. Soc. Trans., 16, pp. 1032–1033.
Born, G. V. R., and Richardson, P. D., 1990, “Mechanical Properties of Human Atherosclerotic Lesions,” Pathology of Human Atherosclerotic Plaques, edited by S. Glagov, W. P. Newman, and S. A. Schaffer, Springer-Verlag, New York, pp. 413–423.
Lendon,  C. L., Davies,  M. J., Born,  G. V. R., and Richardson,  P. D., 1991, “Atherosclerotic Plaque Caps are Locally Weakened When Macrophages Density is Increased,” Atherosclerosis, 87, pp. 87–90.
Lee,  R. T., Grodzinsky,  A. J., Frank,  E. H., Kamm,  R. D., and Schoen,  F. J., 1991, “Structure-Dependent Dynamic Mechanical Behavior of Fibrous Caps From Human Atherosclerotic Plaques,” Circulation, 83, pp. 1764–1770.
Lee,  R. T., Richardson,  S. G., Loree,  H. M., Grodzinsky,  A. J., Gharib,  S. A., Schoen,  F. J., and Pandian,  N., 1992, “Prediction of Mechanical Properties of Human Atherosclerotic Tissue by High-Frequency Intravascular Ultrasound Imaging,” Arterioscler. Thromb., 12, pp. 1–5.
McCord, B. N., 1992, “Fatigue of Atherosclerotic Plaque,” Ph.D. thesis, Department of Mechanical Engineering, Georgia Institute of Technology, GA.
Lendon,  G. L., Davies,  M. J., Richardson,  P. D., and Born,  G. V. R., 1993, “Testing of Small Connective Tissue Specimens for the Determination of the Mechanical Behavior of Atherosclerotic Plaques,” J. Biomed. Eng., 15, pp. 27–33.
Loree,  H. M., Grodzinsky,  A. J., Park,  S. Y., Gibson,  L. J., and Lee,  R. T., 1994, “Static Circumferential Tangential Modulus of Human Atherosclerotic Tissue,” J. Biomech., 27, pp. 195–204.
Topoleski,  L. D. T., Salunke,  N. V., Humphrey,  J. D., and Mergner,  W. J., 1997, “Composition- and History-Dependent Radial Compressive Behavior of Human Atherosclerotic Plaque,” J. Biomed. Mater. Res., 35, pp. 117–127.
Topoleski,  L. D. T., and Salunke,  N. V., 2000, “Mechanical Behavior of Calcified Plaques: A Summary of Compression and Stress-Relaxation Experiments,” Z. Kardiol Suppl., 89, Suppl. 2, pp. II/85–II/91.
Salunke,  N. V., Topoleski,  L. D. T., Humphrey,  J. D., and Mergener,  W. J., 2001, “Compressive Stress-Relaxation of Human Atherosclerotic Plaque,” J. Biomed. Mater. Res., 55, pp. 236–241.
Schulze-Bauer,  C. A. J., Mörth,  C., and Holzapfel,  G. A., 2003, “Passive Biaxial Mechanical Response of Aged Human Iliac Arteries,” J. Biomech. Eng., 125, pp. 395–406.
Stary, H. C., 2003, Atlas of Atherosclerosis: Progression and Regression, The Parthenon Publishing Group Limited, Boca Raton, London, New York, Washington, D.C., 2nd ed.
Schulze-Bauer,  C. A. J., and Holzapfel,  G. A., 2003, “Determination of Constitutive Equations for Human Arteries From Clinical Data,” J. Biomech., 36, pp. 185–169.
Holzapfel, G. A., Schulze-Bauer, C. A. J., and Stadler, M., 2000, “Mechanics of Angioplasty: Wall, Balloon, and Stent,” Mechanics in Biology, edited by J. Casey and G. Bao, The American Society of Mechanical Engineers (ASME), New York, AMD-Vol. 242/BED-Vol. 46, pp. 141–156.
Demer,  L. L., 1995, “A Skeleton in the Atherosclerosis Closet,” Circulation, 92, pp. 2029–2032.
Loree,  H. M., Kamm,  R. D., Stringfellow,  R. G., and Lee,  R. T., 1992, “Effects of Fibrous Cap Thickness on Peak Circumferential Stress in Model Atherosclerotic Vessels,” Circ. Res., 71, pp. 850–858.
Loree,  H. M., Tobias,  B. J., Gibson,  L. J., Kamm,  R. D., Small,  D. M., and Lee,  R. T., 1994, “Mechanical Properties of Model Atherosclerotic Lesion Lipid Pools,” Arterioscler. Thromb., 14, pp. 230–234.
Williamson,  S. D., Lam,  Y., Younis,  H. F., Huang,  H., Patel,  S., Kaazempur-Mofrad,  M. R., and Kamm,  R. D., 2003, “On the Sensitivity of Wall Stresses in Diseased Arteries to Variable Material Properties,” J. Biomech. Eng., 125, pp. 147–155.
Richardson,  P. D., Davies,  M. J., and Born,  G. V. R., 1989, “Influence of Plaque Configuration and Stress Distribution on Fissuring of Coronary Atherosclerotic Plaques,” Lancet, 2(8669), pp. 941–944.
Hickler,  R. B., 1990, “Aortic and Large Artery Stiffness: Current Methodology and Clinical Correlations,” Clin. Cardiol., 13, pp. 317–322.
Schulze-Bauer,  C. A. J., Regitnig,  P., and Holzapfel,  G., 2002, “Mechanics of the Human Femoral Adventitia Including High-Pressure Response,” Am. J. Physiol., 282, pp. H2427–H2440.
Moreno,  P. R., Purushothaman,  K. R., Fuster,  V., and O’Connor,  W. N., 2002, “Intimomedial Interface Damage and Adventitial Inflammation is Increased Beneath Disrupted Atherosclerosis in the Aorta: Implications for Plaque Vulnerability,” Circulation, 105, pp. 2504–2511.
Berberian,  P. A., and Fowler,  S., 1979, “The Subcellular Biochemistry of Human Arterial Lesions. I. Biochemical Constituents and Marker Enzymes in Diseased and Unaffected Portions of Human Aortic Specimens,” Exp. Mol. Pathol., 30, pp. 27–40.
Rhodin, J. A. G., 1980, “Architecture of the Vessel Wall,” Handbook of Physiology, The Cardiovascular System, edited by D. F. Bohr, A. D. Somlyo, and H. V. Sparks, 2, American Physiologial Society, Bethesda, Maryland, pp. 1–31.
Cheng,  G. C., Loree,  H. M., Kamm,  R. D., Fishbein,  M. C., and Lee,  R. T., 1993, “Distribution of Circumferential Stress in Ruptured and Stable Atherosclerotic Lesions: A Structural Analysis With Histopathological Correlation,” Circulation, 87, pp. 1179–1187.


Grahic Jump Location
Human external iliac artery, specimen I: (a) segmented macroscopic view, (b) segmented histological section (EVG coloring)—transmitted light microscopic photograph, (c) high resolution magnetic resonance image of the same artery, filtered and (manually) segmented. The histological section and the magnetic resonance image are taken from the same location.
Grahic Jump Location
Macroscopic view of eight human stenotic iliac arteries, specimens II–IX. Top ruler scale: one side of a square characterizes 1 mm.
Grahic Jump Location
Representative axial and circumferential strips excised from a dissected adventitial layer.
Grahic Jump Location
Eleven strip samples prepared for mechanical testing (from specimen V). Samples of the tissue types A, M-nos, I-nos, I-fc, and I-fm in both directions, and one sample of the calcification I-c in the circumferential direction.
Grahic Jump Location
Representative photograph of a fractured tissue component (specimen I), nondiseased intima I-nos tested in the circumferential direction.
Grahic Jump Location
Uniaxial tensile stress–stretch responses of different human tissues in the circumferential and axial directions. (a), (b) are stress–stretch plots for the adventitia A, (c), (d) are plots for the healthy and diseased media (M-nos and M-f), and (e), (f) are related to the healthy intima I-nos. Labels I-f, VII-f, and VIII-f in (c), (d), indicate fibrotic media samples from specimens I, VII, and VIII, respectively.
Grahic Jump Location
Uniaxial tensile stress–stretch responses of different human tissues in the circumferential and axial directions. (a), (b) are stress–stretch plots for the fibrous cap I-fc, while (c), (d) are plots for the fibrotic intima samples at the medial border I-fm.




Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related Journal Articles
Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In