0
TECHNICAL PAPERS: Fluids/Heat/Transport

Fluid Dynamic Analysis of the 50 cc Penn State Artificial Heart Under Physiological Operating Conditions Using Particle Image Velocimetry

[+] Author and Article Information
Pramote Hochareon, Keefe B. Manning, Arnold A. Fontaine

Pennsylvania State University, Department of Bioengineering, 205 Hallowell Building, University Park, Pennsylvania 16802 USA

John M. Tarbell

City College of New York, Department of Biomedical Engineering, Convent Ave. @138th Street, New York, New York 10031 USA

Steven Deutsch

Pennsylvania State University, Department of Bioengineering, 205 Hallowell Building, University Park, Pennsylvania 16802 USA

J Biomech Eng 126(5), 585-593 (Nov 23, 2004) (9 pages) doi:10.1115/1.1798056 History: Received April 15, 2004; Revised May 04, 2004; Online November 23, 2004
Copyright © 2004 by ASME
Your Session has timed out. Please sign back in to continue.

References

DeVries,  W. C., Anderson,  J. L., Joyce,  L. D., Anderson,  F. L., Hammond,  E. H., Jarvik,  R. K., and Kolff,  W. J., 1984, “Clinical Use of the Total Artificial Heart,” N. Engl. J. Med., 310, pp. 273–278.
Bachmann,  C., Hugo,  G., Rosenberg,  G., Deutsch,  S., Fontaine,  A., and Tarbell,  J. M., 2000, “Fluid Dynamics of a Pediatric Ventricular Assist Device,” Artif. Organs, 24, pp. 362–372.
Magovern,  J. A., Pennock,  J. L., Campbell,  D. B., Pae,  W. E., Pierce,  W. S., and Waldhausen,  J. A., 1986, “Bridge to Heart Transplantation: The Penn State Experience,” J. Heart Transplant, 5, pp. 196–202.
Orvim,  U., Barstad,  R. M., Orning,  L., Petersen,  L. B., Ezban,  M., Hedner,  U., and Sakariassen,  K. S., 1997, “Antithrombotic Efficacy of Inactivated Active Site Recombinant Factor VIIa is Shear Dependent in Human Blood,” Arterioscler., Thromb., Vasc. Biol., 17, pp. 3049–3056.
Holme,  P. A., Orvim,  U., Hamers,  M. J., Solum,  N. O., Brosstad,  F. R., Barstad,  R. M., and Sakariassen,  K. S., 1997, “Shear-Induced Platelet Activation and Platelet Microparticle Formation at Blood Flow Conditions as in Arteries with a Severe Stenosis,” Arterioscler., Thromb., Vasc. Biol., 17, pp. 646–653.
Badimon,  L., Badimon,  J. J., Galvez,  A., Chesebro,  J. H., and Fuster,  V., 1986, “Influence of Arterial Damage and Wall Shear Rate on Platelet Deposition. Ex Vivo Study in a Swine Model,” Arteriosclerosis (Dallas), 6, pp. 312–320.
Yamanaka,  H., Rosenberg,  G., Weiss,  W. J., Snyder,  A. J., Zapanta,  C. M., Pae,  W. E., and Siedlecki,  C. A., 2003, “A Multiscale Surface Evaluation of Thrombosis in Left Ventricular Assist Systems,” ASAIO J., 49, pp. 222.
Weiss,  W. J., Rosenberg,  G., Snyder,  A. J., Pierce,  W. S., Pae,  W. E., Kuroda,  H., Rawhouser,  M. A., Felder,  G., Reibson,  J. D., Cleary,  T. J., Ford,  S. K., Marlotte,  J. A., Nazarian,  R. A., and Hicks,  D. L., 1999, “Steady State Hemodynamic and Energetic Characterization of the Penn State/3M Health Care Total Artificial Heart,” ASAIO J., 45, pp. 189–193.
Weiss,  W. J., Rosenberg,  G., Snyder,  A. J., Donachy,  J., Reibson,  J., Kawaguchi,  O., Sapirstein,  J. S., Pae,  W. E., and Pierce,  W. S., 1993, “A Completely Implanted Left Ventricular Assist Device: Chronic In Vivo Testing,” ASAIO J., 39, pp. M427–M432.
Davis,  P. K., Pae,  W. E., and Pierce,  W. S., 1989, “Toward an Implantable Artificial Heart: Experimental and Clinical Experience at The Pennsylvania State University,” Invest. Radiol., 24, pp. 81–87.
Mavroidis,  D., Sun,  B. C., and Pae,  W. E., 1999, “Bridge to Transplantation: The Penn State Experience,” Ann. Thorac. Surg., 68, pp. 684–687.
Baldwin, J. T., 1990, “An Investigation of the Mean Fluid Velocity and Reynolds Stress Fields with an Artificial Heart Ventricle,” Ph.D. thesis, The Pennsylvania State University, University Park, PA.
Baldwin,  J. T., Deutsch,  S., Geselowitz,  D. B., and Tarbell,  J. M., 1994, “LDA Measurements of Mean Velocity and Reynolds Stress Fields within an Artificial Heart Ventricle,” ASME J. Biomech. Eng., 116, pp. 190–200.
Jin,  W., and Clark,  C., 1993, “Experimental Investigation of Unsteady-Flow Behavior within a Sac-Type Ventricular Assist Device (VAD),” J. Biomech., 26, pp. 697–707.
Jin,  W., and Clark,  C., 1994, “Experimental Investigation of the Motions of the Pumping Diaphragm within a Sac-Type Pneumatically Driven Ventricular Assist Device,” J. Biomech., 27, pp. 43–55.
Phillips,  W. M., Brighton,  J. A., and Pierce,  W. S., 1972, “Artificial Heart Evaluation Using Flow Visualization Techniques,” Trans. ASAIO, 18, pp. 194–201.
Mann, K. A., 1985, “Fluid Dynamic Analysis of Newtonian and Non-Newtonian Fluids in a Penn State Ventricular Assist Device,” M.S. thesis, The Pennsylvania State University, University Park, PA.
Affeld, A., 1979, The State of the Art of the Berlin Total Artificial Heart—Technical Aspects, Assisted Circulation, edited by F. Unger, Springer-Verlag, New York, pp. 307–333.
Tarbell,  J. M., Gunshinan,  J. P., Geselowitz,  D. B., Rosenberg,  G., Shung,  K. K., and Pierce,  W. S., 1986, “Pulsed Ultrasonic Doppler Velocity Measurements Inside a Left Ventricular Assist Device,” ASME J. Biomech. Eng., 108, pp. 232–238.
Phillips,  W. M., Furkay,  S. S., and Pierce,  W. S., 1979, “Laser Doppler Anemometer Studies in Unsteady Ventricular Flows,” Trans. ASAIO, 25, pp. 56–60.
Baldwin,  J. T., Tarbell,  J. M., Deutsch,  S., Geselowitz,  D. B., and Rosenberg,  G., 1988, “Hot-Film Wall Shear Probe Measurements Inside a Ventricular Assist Device,” ASME J. Biomech. Eng., 110, pp. 326–333.
Baldwin, J. T., 1987, “Wall Shear Stress Measurements in the Penn State Ventricular Assist Device Using Hot-Film Anemometry,” M.S. thesis, Pennsylvania State University, University Park, PA.
Hochareon, P., Manning, K. B., Fontaine, A. A., Deutsch, S., and Tarbell, J. M., 2003, “Wall Shear-Rate Estimation within the 50cc Penn State Artificial Heart Using Particle Image Velocimetry,” J. Biomech. Eng., (to be published).
Hochareon, P., 2003, “Development of Particle Imaging Velocimetry (PIV) for Wall Shear Stress Estimation within a 50cc Penn State Artificial Heart Ventricular Chamber,” PhD thesis, Pennsylvania State University, University Park, PA.
Raffel, M., Willert, C. E., and Kompenhans, J., 1998, Particle Image Velocimetry: A Practical Guide, Springer-Verlag, Berlin.
Keane,  R. D., and Adrian,  R. J., 1992, “Theory of Cross-Correlation Analysis of PIV Images,” Appl. Sci. Res., 49, pp. 191–215.
Adrian,  R. J., 1991, “Particle-Imaging Techniques for Experimental Fluid-Mechanics,” Annu. Rev. Fluid Mech., 23, pp. 261–304.
Fikse, T. H., Rosenberg, G., Snyder, A. J., Landis, D. L., Hanson, K. L., Kern, S. E., Geselowitz, D. B., and Pierce, W. S., 1984, “Development and Verification of EVAD/Mock Loop System Model,” Frontiers of Engineering and Computing in Health Care, 1984, Proceedings, Sixth Annual Conference, IEEE Engineering in Medicine and Biology Society, Los Angeles, CA.
Scarano,  F., and Riethmuller,  M. L., 1999, “Iterative Multigrid Approach in PIV Image Processing with Discrete Window Offset,” Exp. Fluids, 26, pp. 513–523.
Scarano,  F., and Riethmuller,  M. L., 2000, “Advances in Iterative Multigrid PIV Image Processing,” Exp. Fluids, 29, pp. S51–S60.
Hart,  D. P., 1998, “High-Speed PIV Analysis Using Compressed Image Correlation,” ASME J. Fluids Eng., 120, pp. 463–470.
Hart,  D. P., 1999, “Super-Resolution PIV by Recursive Local-Correlation,” J. Visualization, 10, pp. 1–10.
Hart, D. P., 1998, “The Elimination of Correlation Errors in PIV Processing,” 9th International Symposium on Applications of Laser Techniques to Fluid Mechanics, Lisbon, Portugal, Instituto Superior Técnico, Lisbon, Portugal, July 13–16, 1998.
Hart,  D. P., 2000, “PIV Error Correction,” Exp. Fluids, 29, pp. 13–22.
J Westerweel,  J., 1994, “Efficient Detection of Spurious Vectors in Particle Image Velocimetry Data,” Exp. Fluids, 16, pp. 236–247.
Hochareon,  P., Manning,  K. B., Fontaine,  A. A., Deutsch,  S., and Tarbell,  J. M., 2003, “Diaphragm Motion Affects Flow Patterns in an Artificial Heart,” Artif. Organs, 27, pp. 1102–9.
Bachmann,  C., Hugo,  G., Rosenberg,  G., Deutsch,  S., Fontaine,  A., and Tarbell,  J. M., 2000, “Fluid Dynamics of a Pediatric Ventricular Assist Device,” Artif. Organs, 24, pp. 362–372.

Figures

Grahic Jump Location
50 cc Penn State artificial heart: (a) front and side view of the Plexiglas model; (b) light sheet orientation for the frontal plane (The light source shown here is placed from the inlet side, which is not necessarily true for all measurements.); and (c) coordinate systems: X-Y system for ports (straight surfaces) and angular system for chamber (curved surface)
Grahic Jump Location
A schematic detailing the orientation (30 deg rotation) of the 50 cc Penn State Artificial Heart’s mitral valve
Grahic Jump Location
Operating conditions (flow, pressure, and piston wave forms) for the experiments
Grahic Jump Location
The PIV velocity maps during early diastole (125 and 150 ms), middle to late diastole (200–400 ms), and systole (450–600 ms) for the 50 cc Penn State artificial heart (Time reference is from the onset of diastole)
Grahic Jump Location
The vorticity maps during early diastole (125 and 150 ms), middle to late diastole (200–400 ms), and systole (450–600 ms) for the 50 cc Penn State artificial heart
Grahic Jump Location
The velocity maps of the mitral port at 200 and 400 ms for the 50 cc Penn State artificial heart  
Grahic Jump Location
The inlet/outlet ports’ average wall shear rate in time series in the beat cycle from (a) the lateral wall of the mitral port (The fully open valve tip position is at wall location approximately 16 mm.), (b) the medial wall of the mitral port (The fully open valve tip position is at wall location approximately 8 mm.), (c) the medial wall of the aortic port, and (d) the lateral wall of the aortic port of the 50 cc Penn State artificial heart
Grahic Jump Location
The vorticity maps of the mitral port area from 430, 440, 450, 460, 470, and 500 ms for the 50 cc Penn State artificial heart  
Grahic Jump Location
The velocity and vorticity maps of the right wall from 100 and 200 ms for the 50 cc Penn State artificial heart. (Note: The size of area is 30×30 mm.)
Grahic Jump Location
The chamber’s average wall shear rate in time series in the beat cycle from (a) the right wall, (b) the bottom wall, (c) the left wall, and (d) the upper wall of the 50 cc Penn State artificial heart    
Grahic Jump Location
The velocity and vorticity maps of the bottom wall from time 200 and 300 ms for the 50 cc Penn State artificial heart. (Note: The size of area is 30×30 mm.)  
Grahic Jump Location
Qualitative summary of wall shear rates within the 50 cc Penn State artificial heart during diastole and systole

Tables

Errata

Discussions

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related Journal Articles
Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In