0
TECHNICAL BRIEFS

A Method for Matching the Refractive Index and Kinematic Viscosity of a Blood Analog for Flow Visualization in Hydraulic Cardiovascular Models

[+] Author and Article Information
T. T. Nguyen, Y. Biadillah

Department of Mechanical Engineering, McGill University

R. Mongrain

Department of Mechanical Engineering, McGill UniversityMontreal Heart Institute*

J. Brunette, J.-C. Tardif

Montreal Heart Institute

O. F. Bertrand

Quebec Heart and Lung Institute

J Biomech Eng 126(4), 529-535 (Sep 27, 2004) (7 pages) doi:10.1115/1.1785812 History: Received July 17, 2003; Revised January 14, 2004; Online September 27, 2004
Copyright © 2004 by ASME
Your Session has timed out. Please sign back in to continue.

References

Bitsch, L., Olesen, L. H., Westergaard, C. H., Bruus, H., Klank, H., and Kutter, J. P., 2003, Micro PIV on Blood Flow in a Microchannel, microTAS 2003, Lake Tahoe, USA, proc. vol. 1 , pp. 825–828.
Yoon, J. H., and Lee, S. J., 2001, 3-D Stereoscopic PIV Measurements of Flow around an Axial Fan, Proc. 4th International Symposium on Particle Image Velocimetry, Gottingen, Germany, Sept. 17–19, Paper 1045.
Dierksheide, U., Meyer, P., Hovestadt, T., and Hentschel, W., 2001, Endoscopic 2D-PIV Flow Field Measurement in IC Engines, 4th International Symposium on Particle Image Velocimetry, Göttingen, Germany, Sept. 17–19, Paper 1060.
Gang, C., Jing, L., Lianfeng, X., Jianbin, X., Shanghai, J., and Jianzhong, L., 2001, A Review on PIV with Image Techniques, XXIX IAHR Congress, Beijing, China, September 16–21, p. 946.
Lowe,  M. I., and Kutt,  P. H., 1992, Refraction through cylindrical tubes, Exp. Fluids, 10, pp. 50–54.
Budwig,  R., 1994, Refractive index matching methods for liquid flow investigations, Experiments in fluids, 17, pp. 350–355.
Reul, H., 1983, Hydraulic analogue model of the systemic circulation—Designed for fluid mechanical studies in the left heart and systemic arteries, Eds. Ghista, Dhanjoo N., Advances in cardiovascular physics, vol. 5 (Part IV Prostheses, assist and artificial organs.), ISBN 3805536097, pp. 43–54.
Affeld, K., 1998, Intra and Extra-corporeal Cardiovascular Fluid Dynamics Vol. 1: General principles in application. WIT Press, ISBN: 1853125474, Chap. 5, pp. 163–168.
Lim,  W. L., Chew,  Y. T., Chew,  T. C., and Low,  H. T., 1994, Particle image velocimetry in the investigation of flow past artificial heart valves, Ann. Biomed. Eng., 22, pp. 307–318.
Hendrik,  S., and Aviram,  A., 1982, Use of Zinc Iodide solutions in flow research, Rev. Sci. Instrum., 53(1), pp. 75–78.
MSDS Sodium Iodide, Sigma-Aldrich, CAS number: 7681-82-5 (www.sigmaaldrich.com).
Gijsen,  F. J. H., van de Vosse,  F. N., and Janssen,  J. D., 1998, The influence of the non-Newtonian properties of blood on the flow in large arteries: steady flow in a carotic bifurcation model, J. Biomech., 32, pp. 601–608.
Gijsen,  F. J. H., van de Vosse,  F. N., and Janssen,  J. D., 1999, The influence of the non-Newtonian properties of blood on the flow in large arteries: unsteady flow in a 90° curved tube, J. Biomech., 32, pp. 705–713.
Wernicke,  J. T., Meier,  D., Mizuguchi,  K., Damm,  G., Aber,  G., Benkowski,  R., Nose,  Y., Noon,  G. P., and DeBakey,  M. E., 1995, A fluid dynamic analysis using flow visualization of the Baylor/NASA implantable axial flow blood pump for design improvement, Artif. Organs, 19(2), pp. 161–77.
MSDS Sodium Thiocyanate, Sigma-Aldrich, CAS number: 540-72-7 (www.sigmaaldrich.com).
MSDS Potassium Thiocyanate, Sigma-Aldrich, CAS number: 333-20-0 (www.sigmaaldrich.com).
Hein,  J. A., and O’Brien,  W. D., 1992, A flexible blood flow phantom capable of independently producing constant and pulsatile flow with predictable spatial flow profile for ultrasound flow measurement validation, IEEE Trans. Biomed. Eng., 39, pp. 1111–1122.
Mikami,  F., Chen,  B., and Nishikawa,  N., 2001, Visualization and PTV study of natural convection in particle suspensions, JSME Int. J., Ser. B, 44(1), pp. 30–37.
Uzol,  O., Chow,  Y. C., Katz,  J., and Meneveau,  C., 2002, Unobstructed particle image velocimetry measurements within an axial turbo-pump using liquid and blades with matched refractive indices, Exp. Fluids, 33(6), pp. 909–916.
McAllister,  R. A., 1960, The viscosity of liquid mixtures, AIChE J., 6(3), pp. 427–431.
Narrow,  T. L., Yoda,  M., and Abdel-Khalik,  I., 2000, A simple model for the refractive index of sodium iodide aqueous solutions, Exp. Fluids, 28, pp. 282–283.
Singh,  S., 1983, An exact technique for mixing of immersion fluids, Exp. Tech., 7(1), pp. 27–29.
MSDS Zinc Iodine, Sigma-Aldrich, CAS number: 10139-47-6 (www.sigmaaldrich.com).
Oates,  C. P., 1991, Towards an ideal blood analogue for Doppler ultrasound phantoms, Phys Med Biol., 11, pp. 1433–1442.
Law,  Y. F., Johnston,  K. W., Routh,  H. F., and Cobbold,  R. S. C., 1989, On the design of a steady flow model for Doppler ultrasound studies, Ultrasound Med. Biol., 15, pp. 505–516.
Ramnarine,  K. V., Nassiri,  D. K., Hoskins,  P. R., and Lubbers,  J., 1998, Validation of a new blood-mimicking fluid for use in Doppler flow test objects, Ultrasound Med. Biol., 24(3), pp. 451–459.
Stewart,  S. F. C., 1999, A rotating phantom torus for assessing color Doppler Accuracy, Ultrasound Med. Biol., 25(8), pp. 1251–1264.
Liepsch,  D., 2002, An introduction to biofluids mechanics-basic models and applications, J. Biomech., 35, pp. 415–435.
Naiki,  T., Yanai,  Y., and Hayabashi,  K., 1995, Evaluation of high polymer solutions as blood analog fluid, J. Jpn. Soc. Biorheology, 9, pp. 84–89.
Pohl,  M., Wendt,  M. O., Werner,  S., Koch,  B., and Lerche,  D., 1996, In vitro testing of artificial heart valves: comparison between Newtonian and non-Newtonian fluids, Artif. Organs, 20(1), pp. 37–46.
Brookshier,  K. A., and Tarbell,  J. M., 1993, Evaluation of a transparent blood analog fluid: aqueous xanthan gum/glycerin, Biorheology, 30, pp. 107–116.
Mann,  D. E., and Tarbell,  J. M., 1990, Flow of non-Newtonian blood analog fluids in rigid curved and straight artery models, Biorheology, 27, pp. 711–733.
ABBE-3L Refractometer Operator’s manual and refractive index 1996, University of Richmond (http://web.uccs.edu/bgaddis/chem337/expts/nD/nD.htm).
Barnes, H. A., Hutton, J. F., and Walters, K., 1989, An introduction to rheology, Rheology Series, 3 , Elsevier, ISBN 0-444-87140-3, p. 13.
George,  J., Sastry,  N. V., Patel,  S. R., and Valand,  M. K., 2002, Densities, viscosities, speeds of sound, and relative permittivities for Methyl Acrylate+1-Alcohols(C1–C6) at T=(308.15 and 318.15 K),J. Chem. Eng. Data, 47(2), pp. 262–269.
Kirk, R. E., and Othmer, D. F., 1984, Kirk-Othmer Encyclopedia of chemical technology (3rd Edition) 1984, John Wiley & Sons, vol. 9, ISBN: 0-471-52677-0, pp. 62–64.
Joram, C., 1998, The distillation plant of the DELPHI Barrel RICH Detector, DELPHI 98-53 RICH 94, (Publications of the CERN laboratory in Geneva, Switzerland (http://delphiwww.cern.ch).
Lide D. R., (Ed), 2001, Handbook of Chemistry & Physics, CRC Press, Inc., ISBN: 0-8493-0482-2, p. 3-161, p. 3-269, p. 3-316, p. 3-224, p. 3-380, and pp. 10-223, 10-224.
Perry, R. H., Green, D. W., and Maloney, J. O. (Eds), 1997, Perry’s Chemical Engineers’ Handbook, McGraw-Hill, 7th edition, ISBN: 0070498415, pp. 2–7 and pp. 2–47.
MSDS Methyl Salicylate, Sigma-Aldrich, CAS number: 119-36-8 (www.sigmaaldrich.com).
MSDS Ethanol, Sigma-Aldrich, CAS number: 64-17-5 (www.sigmaaldrich.com).
MSDS Diethyl Phthalate, Sigma-Aldrich, CAS number: 84-66-2 (www.sigmaaldrich.com).
MSDS D-Limonene, Sigma-Aldrich, CAS number: 5989-27-5 (www.sigmaaldrich.com).
MSDS Glycerin, Sigma-Aldrich, CAS number: 56-81-5 (www.sigmaaldrich.com).
Chemical Resistance of Plexiglas, V-Series Acrylic Resins, Technical report by Atoglas Inc. ADV # 010334/TGI/6-01 (also on www.atoglass.com).
Chemical Resistance of Rigid Geon® vinyls based on immersion test, Technical service report No. 15 by Plastomatic Inc. (also on http://www.plastomatic.com/geom-chemical-resistance.pdf).
Tenite Cellulosic Plastics, Technical reports PP 101, PP 102 and PP 103 by Eastman Inc. (also on http://www.eastman.com/Online_Publications).
O’Connell,  P. A., and McKenna,  G. B., 1999, Arrhenius-type temperature dependence of the segmental relaxation below Tg, J. Chem. Phys., 110(22), pp. 11054–11060.
Helleloid, G. T., 2001, On the computation of viscosity-shear rate temperature master curves for polymeric liquids, Morehead Electronic Journal of Applicable Mathematics, 1 , pp. 1–11 (also on http://www.morehead-st.edu/colleges/science/math/mejam/).

Figures

Grahic Jump Location
(a) Picture of a mold used to manufacture the hydraulic model having a small circular groove defect. (b) Resulting reflections and hidden regions in the PIV acquisition due to refractive index mismatch and lens effect
Grahic Jump Location
(a) Temperature dependence of the refractive index of Diethyl Phthalate (Note: the error bars on these graphs are printed, but are too small to be seen). (b) Temperature dependence of the refractive index of Ethanol (Note: the error bars on these graphs are printed, but are too small to be seen)
Grahic Jump Location
(a) Temperature dependence of the dynamic viscosity of Diethyl Phthalate. (b) Temperature dependence of the dynamic viscosity of Ethanol

Tables

Errata

Discussions

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related Journal Articles
Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In