Design of an MRI-Compatible Robotic Stereotactic Device for Minimally Invasive Interventions in the Breast†

[+] Author and Article Information
Blake T. Larson, Arthur G. Erdman

Dept. of Mechanical Engineering, University of Minnesota, 111 Church Street SE, Minneapolis, MN 55455

Nikolaos V. Tsekos

Mallinckrodt Institute of Radiology, Washington University, 510 S Kingshighway Blvd, Campus Box 8225, St. Louis, MO 63110 e-mail: tsekosn@mir.wustl.edu

Essa Yacoub

Center of Magnetic Resonance Research, University of Minnesota, 2021 Sixth Street SE, Minneapolis, MN 55455 e-mail: yacoub@cmrr.umn.edu

Panagiotis V. Tsekos

Artemis MRI, LLC, 2322 Towerview Circle, Bloomington, MN 55431

Ioannis G. Koutlas

Oral Pathology, University of Minnesota, 515 Delaware St SE, Minneapolis, MN 55455

J Biomech Eng 126(4), 458-465 (Sep 27, 2004) (8 pages) doi:10.1115/1.1785803 History: Received February 13, 2004; Online September 27, 2004
Copyright © 2004 by ASME
Your Session has timed out. Please sign back in to continue.


Harms,  S., 1996, “MRI in breast cancer diagnosis and treatment,” Curr. Probl. Diagn. Radiol., 25, pp. 193–215.
Mushlin,  A. I., Kouides,  R. W., and Shapiro,  D. E., 1998, “Estimating the accuracy of screening mammography: A meta-analysis,” Am. J. Prev. Med., 14, pp. 143–153.
Fischer,  U., Kopka,  L., and Grabbe,  E., 1998, “Magnetic resonance guided localization and biopsy of suspicious breast lesions,” Top Magn. Reson Imaging, 9, pp. 44–59.
Harms,  S., 1998, “Breast magnetic resonance imaging,” Semin Ultrasound CT MR, 19, pp. 104–120.
Harms,  S. E., 1998, “Integration of breast magnetic resonance imaging with breast cancer treatment,” Top Magn. Reson Imaging, 9, pp. 79–91.
Greenstein-Orel,  S., Schnall,  M. D., Newman,  R. W., Powell,  C. M., Torosian,  M. H., and Rosato,  E. F., 1994, “MR Imaging-guided Localization and Biopsy of Breast Lesions: Initial Experience,” Radiology, 193, pp. 97–102.
Greenstein-Orel,  S., 1996, “High-Resolution MR Imaging of the Breast,” Semin Ultrasound CT MR, 17, pp. 476–493.
Weinreb,  J., and Newstead,  G., 1994, “Controversies in breast MRI,” Magn. Reson. Q., 10, pp. 67–83.
Sabel,  M., and Aichinger,  H., 1996, “Recent developments in breast imaging,” Phys. Med. Biol., 41, pp. 315–368.
Coons,  T., 1996, “MRI’s role in assessing and managing breast disease,” Radiology Technology, 67, pp. 311–336.
Heywang-Kobrunner,  S. H., Huynh,  A. T., Viehweg,  P., Hanke,  W., Requardt,  H., and Paprosch,  I., 1994, “Prototype breast coil for MR-guided needle localization,” J. Comput. Assist. Tomogr., 18, pp. 876–881.
Orang-Khadivi,  K., Pierce,  B., Ollom,  C., Floyd,  L., Siegle,  R., and Williams,  R., 1994, “New magnetic resonance imaging techniques for the detection of breast cancer,” Breast Cancer Res. Treat., 32, pp. 119–135.
Kuhl,  C. K., Elevelt,  A., Leutner,  C. C., Gieseke,  J., Pakos,  E., and Schild,  H. H., 1997, “Interventional breast MR imaging: clinical use of a stereotactic localization and biopsy device,” Radiology, 204, pp. 667–675.
Hall-Craggs,  M. A., and Mumtaz,  H., 1997, “Keeping abreast of magnetic resonance: development in breast cancer imaging,” Clin. Radiol. 52, pp. 253–255.
Hulka,  C. A., Edmister,  W. B., Smith,  B. L., Tan,  L., Sgroi,  D. C., Campbell,  T., Kopans,  D. B., and Weisskoff,  R. M., 1997, “Dynamic Echo-Planar Imaging of the Breast: Experience in Diagnosing Breast Carcinoma and Correlation with Tumor Angiogenesis,” Radiology, 205, pp. 837–842.
Fischer,  U., Vosshenrich,  R., Doler,  W., Hamadeh,  A., Oestmann,  J. W., and Grabbe,  E., 1995, “MR imaging-guided breast intervention: experience with two systems,” Radiology, 195, pp. 533–538.
Gorczyca,  D., DeBruhl,  N. D., Sullenberger,  P. C., Farria,  D., Sinha,  S., and Bassett,  L. W., 1995, “Wire Localization of Breast Lesions Before Biopsy: Use of an MR-Compatible Device in Phantoms and Cadavers,” American Journal of Radiology, 165, pp. 835–838.
Mumtaz,  H., Hall-Craggs,  M. A., Wotherspoon,  A., Paley,  M., Buonaccorsi,  G., Amin,  Z., Wilkinson,  I., Kissin,  M. W., Davidson,  T. I., Taylor,  I., and Brown,  S. G., 1996, “Laser Therapy for Breast Cancer: MR Imaging and Histopathologic Correlation,” Radiology, 200, pp. 651–658.
Vogl,  T. J., Mack,  M. G., Straub,  R., Roggan,  A., and Felix,  R., 1997, “Magnetic Resonance Imaging-Guided Abdominal Interventional Radiology: Laser-Induced Thermotherapy of Liver Metastases,” Endoscopy, 29, pp. 577–583.
Staren,  E. D., Sabel,  M. S., Gianakakis,  L. M., Wiener,  G. A., Hart,  V. M., Gorski,  M., Dowlatshahi,  K., Corning,  B. F., Haklin,  M. F., and Koukoulis,  G., 1997, “Cryosurgery of breast cancer [see comments],” Archives of Surgery, 132, pp. 28–33; discussion 34.
Tackenberg,  J. N., 1990, “Cryolumpectomy: another option for breast cancer,” Nursing, 20, pp. 32J–34J.
Ablin,  R. J., 1998, “The use of cryosurgery for breast cancer [letter; comment],” Archives of Surgery, 133, pp. 106.
Cline,  H. E., Schenck,  J. F., Hynynen,  K., Watkins,  R. D., Souza,  S. P., and Jolesz,  F. A., 1992, “MR-guided focused ultrasound surgery,” J. Comput. Assist. Tomogr., 16, pp. 956–965.
Chinzei, K., Kikinis, R., and Jolesz, F. A., 1999, “MR Compatibility of Mechatronic Devices: Design Criteria,” Lecture Notes in Computer Science, MICCAI’99, Springer-Verlag, Berlin, Germany, 1679 , pp. 1020–1030.
Doler,  W., Fischer,  U., Metzger,  I., Harder,  D., and Grabbe,  E., 1996, “Stereotaxic Add-on Device for MR-guided Biopsy of Breast lesions,” Radiology, 200, pp. 863–864.
Schneider,  E., Rohlin,  K. W., Schnall,  M. D., Giaquinto,  R. O., Morris,  E. A., and Ballon,  D., 2001, “An Apparatus for MR-Guided Breast Lesion Localization and Core Biopsy: Design and Preliminary Results,” J. Magn. Reson Imaging, 14, pp. 243–253.
Kaiser,  W. A., Fischer,  H., Vagner,  J., and Selig,  M., 2000, “Robotic System for Biopsy and Therapy of Breast Lesions in a High-Field Whole-Body Magnetic Resonance Tomography Unit,” Invest. Radiol., 35, pp. 513–519.
Fischer, H., Hempel, E., Vagner, J., Gumb, L., Kaiser, W. A., and Melzer, A., 2000, “Telerobotics for High Precise Radiological Interventions,” Proc. of MICRO.tec 2000: VDE World Microtechnologies Congress, VDE-Verlag, Berlin, Germany, 2 , pp. 387–394.
Tsekos, N. V., Shudy, J., Yacoub, E., Tsekos, P. V., and Koutlas, I. G., 2001, “Development of a Robotic Device for MRI-Guided Interventions in the Breast,” Proc. of the IEEE 2nd International Symposium on Bioinformatics and Bioengineering Conference, pp. 200–207.
Yacoub, E., Larson, B., Tsekos, P. V., Koutlas, I. G., Erdman, A. G., and Tsekos, N. V., 2002, “Robotic Device for MR-Guided Interventions in the Breast,” Proc. 10th International Society of Magnetic Resonance in Medicine, Society of Magnetic Resonance, Berkeley, CA, 1 .
Sandor, G. N., and Erdman, A. G., 1984, Advanced Mechanism Design: Analysis and Synthesis, Prentice-Hall Inc., Englewood Hills, New Jersey, pp. 609–611.
Fichtinger, G., Krieger, A., Susil, R. C., Tanacs, A., Whitcomb, L. L., and Atalar, E., 2002, “Transrectal Prostate Biopsy Inside Closed MRI Scanner with Remote Actuation, under Real-Time Image Guidance,” Lecture Notes in Computer Science, MICCAI2002, Springer-Verlag, Berlin, Germany, 2488 , pp. 91–98.
Masamune,  K., Kobayashi,  E., Masutani,  Y., Suzuki,  M., Dohi,  T., Iseki,  H., and Takakura,  K., 1995, “Development of a MRI-Compatible Needle Insertion Manipulator for Stereotactic Neurosurgery,” J. Image Guid Surg., 1, pp. 242–248.
Masamune,  K., Sonderegger,  M., Isek,  H., Takakura,  K., Suzuki,  M. and Dohi,  and Takeyoshi,  D., 1996, “Robots for stereotactic neurosurgery,” Advanced Robotics, 10, pp. 391–401.
Miyata, N., Kobayachi, E., Kim, D., Masamune, K., Sakuma, I., Yahagi, N., Tsuji, T., Inada, H., Dohi, T., Iseki, H., and Takakura, K., 2002, “Micro-grasping Forceps Manipulator for MR-Guided Neurosurgery,” Lecture Notes in Computer Science, MICCAI 2002, Springer-Verlag, Berlin, Germany, 2488 , pp. 107–113.
Chinzei, K., Nobuhiko, H., Jolesz, F. A., and Kikinis, R., 2002, “MR Compatible Surgical Assist Robot: System Integration and Preliminary Feasibility Study,” Lecture Notes in Computer Science, MICCAI 2000, Springer-Verlag, Berlin, Germany, 1935 , pp. 921–930.
Fichtinger, G., Stoianovici, D., and Taylor, R. H., 2001, “The Surgical CAD/CAM Paradigm and an Implementation for Robotically Assisted Percutaneous Local Therapy,” Proc. 30th Applied Imagery Pattern Recognition Workshop, pp. 3–8.
Larson, B. T., Tsekos, N. V., Erdman, A. G., Yacoub, E., Tsekos, P. V., and Koutlas, I. G., 2002, “Design of a Robotic Stereotactic Device for Biopsy and Minimally Invasive Interventions in the Breast with Real Time MRI Guidance,” Proc. ASME 2002 Design Engineering Technical Conferences and Computers and Information in Engineering Conference, Montreal, Canada.


Grahic Jump Location
Schematic representation of the device. (1) Elevated patient couch part of the device; (2) Representations of patient breasts; (3) Rotating probe stage; (4) Probe insertion and angulation mechanism; (5) Telescoping shafts; (6) Ultrasonic motors; (7) Motor control and power lines; (8) Control CPU and digital-to-analog converter; (9) Motor controllers
Grahic Jump Location
The operation principle of the device, top view
Grahic Jump Location
The operation principle of the device, side view. (BPH): back pivotal height, (FPH): front pivotal height
Grahic Jump Location
Overview photograph of the device (patient couch not shown)
Grahic Jump Location
Top view of telescoping shafts with universal joints at an angle of 45°. The center shaft controls the breast stabilization while the outer shafts control the probe height and pitch. (BPH): back pivotal height, (FPH): front pivotal height
Grahic Jump Location
Schematic of the robot control hardware and software. (DAC): digital-to-analog converter card, (USM): ultrasonic motors, (MCtr): USM controllers, (Dev): Device, (OE-1): optical encoders on USM axis, (OE-2): optical encoders on the device, (MRI): MR scanner, (MRC): MR console, (LOGF): log file
Grahic Jump Location
The Graphical User Interface (GUI). (BPH): back pivotal height, (FPH): front pivotal height
Grahic Jump Location
MR images collected at 4 Tesla showing the stabilization of the breast phantom with the robotic device with decreasing plate distance from frame (1) to (4). The circles indicate the position of the MR-visible markers. No signal is detected from the device and the stabilization plates; the latter are depicted with an open box (stationary) and a solid box (movable). The arrow in the 4th frame points to a simulated target lesion
Grahic Jump Location
MR images collected at 4 Tesla showing the insertion of a needle into the breast phantom with the robotic device. The distal portion of the needle (arrow) was filled with MR contrast agent. The circle indicates the targeted lesion



Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related Journal Articles
Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In