TECHNICAL PAPERS: Fluids/Heat/Transport

The Effect of Airway Wall Motion on Surfactant Delivery

[+] Author and Article Information
D. Halpern

Department of Mathematics, University of Alabama, Tuscaloosa, AL 35487

J. L. Bull, J. B. Grotberg

Biomedical Engineering Department, The University of Michigan, Ann Arbor, MI 48109

J Biomech Eng 126(4), 410-419 (Sep 27, 2004) (10 pages) doi:10.1115/1.1784475 History: Received May 19, 2003; Revised November 18, 2003; Online September 27, 2004
Copyright © 2004 by ASME
Your Session has timed out. Please sign back in to continue.


Corbet,  A., Bucciarelli,  R., Goldman,  S., Mammel,  M., Wold,  D., and Long,  W., 1991, “Decreased mortality rate among small premature infants treated at birth with a single dose of synthetic surfactant: a multicenter controlled trial,” J. Pediatr. (St. Louis), 118(2), pp. 277–284.
Kendig,  J. W., Notter,  R. H., Cox,  C. , 1991, “A comparison of surfactant as immediate prophylaxis and as rescue therapy in newborns of less than 30 weeks gestation,” N. Engl. J. Med., 324, pp. 865–871.
Long,  W., Corbet,  A., Cotton,  R., Courtney,  S., McGuiness,  G., Walter,  D., Watts,  J., Smyth,  J., Bard,  H., and Chernick,  V., 1991, “A controlled trial of synthetic surfactant in infants weighing 1250 g or more with respiratory distress syndrome. The American Exosurf Neonatal Study Group I, and the Canadian Exosurf Neonatal Study Group,” N. Engl. J. Med., 325(24), pp. 1696–703.
Jobe,  A. H., 1993, “Pulmonary surfactant therapy,” N. Engl. J. Med., 328(12), pp. 861–868.
Fuhrman,  B. P., Paczan,  P. R., and DeFrancisis,  M., 1991, “Perfluorocarbon-associated gas exchange,” Crit. Care Med., 19(5), pp. 712–22.
Wolfson,  M. R., Greenspan,  J. S., Deoras,  K. S., Rubenstein,  S. D., and Shaffer,  T. H., 1992, “Comparison of gas and liquid ventilation: clinical, physiological, and histological correlates,” J. Appl. Physiol., 72(3), pp. 1024–31.
Leach,  C. L., Fuhrman,  B. P., Morin,  F. C., and Rath,  M. G., 1993, “Perfluorocarbon-associated gas exchange (partial liquid ventilation) in respiratory distress syndrome: a prospective, randomized, controlled study,” Crit. Care Med., 21(9), pp. 1270–8.
Tutuncu,  A. S., Akpir,  K., Mulder,  P., Erdmann,  W., and Lachmann,  B., 1993, “Intratracheal perfluorocarbon administration as an aid in the ventilatory management of respiratory distress syndrome,” Anesthesiology, 79(5), pp. 1083–93.
Hirschl,  R. B., Parent,  A., Tooley,  R., McCracken,  M., Johnson,  K., Shaffer,  T. H., Wolfson,  M. R., and Bartlett,  R. H., 1995, “Liquid ventilation improves pulmonary function, gas exchange, and lung injury in a model of respiratory failure,” Ann. Surg., 221(1), pp. 79–88.
Espinosa,  F. F., and Kamm,  R. D., 1998, “Meniscus formation during tracheal instillation of surfactant,” J. Appl. Physiol., 85(1), pp. 266–72.
Halpern,  D., Jensen,  O. E., and Grotberg,  J. B., 1998, “A theoretical study of surfactant and liquid delivery into the lung,” J. Appl. Physiol., 85(1), pp. 333–352.
Espinosa,  F. F., and Kamm,  R. D., 1999, “Bolus dispersal through the lungs in surfactant replacement therapy,” J. Appl. Physiol., 86(1), pp. 391–410.
Grotberg,  J. B., Halpern,  D., and Jensen,  O. E., 1995, “Interaction of exogenous and endogenous surfactant: spreading-rate effects,” J. Appl. Physiol., 78, pp. 750–756.
Gaver,  D. P., and Grotberg,  J. B., 1990, “The dynamics of a localized surfactant on a thin film,” J. Fluid Mech., 213, pp. 127–148.
Troian,  S. M., Herbolzheimer,  E., and Safran,  S. A. P. R. L., 1990, “Model for the fingering instability of spreading surfactant drops,” Phys. Rev. Lett., 65, pp. 333–336.
Jensen,  O. E., and Grotberg,  J. B., 1992, “Insoluble surfactant spreading on a thin viscous film: shock evolution and film rupture,” J. Fluid Mech., 240, pp. 259–288.
Espinosa,  F. F., Shapiro,  A. H., Fredberg,  J. J., and Kamm,  R. D., 1993, “Spreading of exogenous surfactant in an airway,” J. Appl. Physiol., 75, pp. 2028–2039.
Siegfried,  W., 1993, “Perspectives in gene therapy with recombinant adenoviruses,” Exp. Clin. Endocrinol., 101(1), pp. 7–11.
Grotberg, J. B., 1994, Pulmonary flow and transport phenomena, In: Ann. Rev. Fluid Mech., J. L. Lumley, M. Van Dyke, and H. L. Reed, eds, Annual Reviews, Inc., Palo Alto, pp. 529–571.
Jensen,  O. E., Halpern,  D., and Grotberg,  J. B., 1994, “Transport of a passive solute by surfactant-driven flows,” Chem. Eng. Sci., 49(8), pp. 1107–1117.
Bull, J. L., D. Halpern, and J. B. Grotberg, 1999, The effect of time-periodic airway stretch on surfactant and liquid transport in the lung, in Interfaces for the Twenty-First Century, Monterey, CA.
Bull,  J. L., Nelson,  L. K., Walsh,  J. T., Glucksberg,  M. R., Schurch,  S., and Grotberg,  J. B., 1999, “Surfactant-spreading and surface-compression disturbance on a thin viscous film,” J. Biomech. Eng., 121(1), pp. 89–98.
Bull,  J. L., and Grotberg,  J. B., 2003, “Surfactant spreading on thin viscous films: film thickness evolution and periodic wall stretch,” Exp. Fluids, 34(1), pp. 1–15.
Jensen,  O. E., 1998, “The stress singularity in surfactant-driven thin-film flows. Part 2. Inertial effects,” J. Fluid Mech., 372, pp. 301–322.
Weh,  L., and Linde,  H., 1973, “Kraterfrmige Oberflchenstraungen in Anstrichfilmen, verursacht durch Silikonlzustze,” Plaste Kautsch., 20, pp. 849–860.
Keshgi,  H. S., and Scriven,  L. E., 1991, “Dewetting, nucleation and growth of dry regions,” Chem. Eng. Sci., 46, pp. 519–26.
Gaver,  D. P., and Grotberg,  J. B., 1992, “Droplet spreading on a thin viscous film,” J. Fluid Mech., 235, pp. 399–414.
Halpern,  D., and Grotberg,  J. B., 1992, “Dynamics and transport of a localized soluble surfactant on a thin film,” J. Fluid Mech., 237, pp. 1–11.
Jensen,  O. E., and Grotberg,  J. B., 1993, “The spreading of heat or soluble surfactant along a thin liquid film,” Phys. Fluids A, 5(1), pp. 58–68.
Yih,  C.-S., 1969, “Three-dimensional motion of a liquid film induced by surface-tension variation or gravity,” Phys. Fluids, 12(10), pp. 1982–1987.
Davis,  S. H., Liu,  A.-K., and Sealy,  G. R., 1974, “Motion driven by surface-tension gradients in a tube lining,” J. Fluid Mech., 62, pp. 737–751.
Espinosa,  F. F., and Kamm,  R. D., 1997, “Thin layer flows due to surface tension gradients over a membrane undergoing non-uniform, periodic strain,” Ann. Biomed. Eng., 25(6), pp. 913–925.
Weibel, E. R. and D. M. Gomez, 1962, “Architecture of the human lung,” Science Wash. D.C. 137 , pp. 577–585.
Sleigh, M. A., 1991, Mucus Propulsion, In: The Lung: Scientific Foundations, R. G. Crystal and J. B. West, eds, Raven, New York, pp. 189–196.
Otis,  D. R., Ingenito,  E. P., Kamm,  R. D., and Johnson,  M., 1994, “Dynamic surface tension of surfactant TA: experiments and theory,” J. Appl. Physiol., 77(6), pp. 2681–8.
Krueger,  M. A., and Gaver,  D. P., 2000, “A theoretical model of pulmonary surfactant multilayer collapse under oscillating area conditions,” J. Colloid Interface Sci., 229, pp. 353–364.
Horn,  L. W., and Davis,  S. H., 1975, “Apparent surface tension hysteresis of a dynamical system,” J. Colloid Interface Sci., 51, pp. 459–475.
Bastacky,  J., Lee,  C. Y., Goerke,  J., Koushafar,  H., Yager,  D., Kenaga,  L., Speed,  T. P., Chen,  Y., and Clements,  J. A., 1995, “Alveolar lining layer is thin and continuous: low-temperature scanning electron microscopy of rat lung,” J. Appl. Physiol., 79(5), pp. 1615–28.
Widdicombe,  J., 1997, “Airway and alveolar permeability and surface liquid thickness: Theory,” J. Appl. Physiol., 82(1), pp. 3–12.
Craster,  R. V., and Matar,  O. K., 2000, “Surfactant transport on mucus films,” J. Fluid Mech., 425, pp. 235–258.
Ingenito,  E. P., Mark,  L., Morris,  J., Espinosa,  F. F., Kamm,  R. D., and Johnson,  M., 1999, “Biophysical characterization and modeling of lung surfactant components,” J. Appl. Physiol., 86(5), pp. 1702–1714.
Schurch,  S., Bachofen,  H., Goerke,  J., and Possmayer,  F., 1989, “A captive bubble method reproduces the in situ behavior of lung surfactant monolayers,” J. Appl. Physiol., 67, pp. 2389–2396.
Ferziger, J. H. and M. Peric, 2002, Computational methods for fluid dynamics, Berlin, Springer.
Slutsky, A. S., 1991, Mechanical Ventilation, In: The Lung: Scientific Foundations, R. G. Crystal and J. B. West, eds, Raven, New York, pp. 2163–2174.
Dreyfuss,  D., and Saumon,  G., 1998, “Ventilator-induced lung injury-Lessons from experimental studies,” Crit. Care Med., 157(1), pp. 294–323.
Tremblay,  L. N., and Slutsky,  A. S., 1998, “Ventilator-induced injury: From barotrauma to biotrauma,” Proc. Assoc. Am. Physicians, 110(6), pp. 482–488.
Tremblay, L. N., A. S. Slutsky, D. Dreyfuss, and G. Saumon, 1998, Ventilator-induced lung injury: mechanisms and clinical correlates, In: Physiological basis of ventilatory support, J. J. Marini and A. S. Slutsky, eds, Marcel Dekker, New York, pp. 395–451.
Halpern,  D., and Grotberg,  J. B., 1993, “Surfactant effects on fluid-elastic instabilities of liquid-lined flexible tubes: a model of airway closure,” J. Biomech. Eng., 115(3), pp. 271–277.
Jensen,  O. E., 1997, “The thin liquid lining of a weakly curved cylindrical tube,” J. Fluid Mech., 331, pp. 373–403.
Rosenzweig,  J., and Jensen,  O. E., 2002, “Capillary-elastic instabilities of liquid-lined lung airways,” J. Biomech. Eng., 124(6), pp. 650–655.
Cassidy,  K. J., Gavriely,  N., and Grotberg,  J. B., 2001, “Liquid plug flow in straight and bifurcating tubes,” J. Biomech. Eng., 123(6), pp. 580–589.
Crystal, R. G. and J. B. West, 1991, The lung: scientific foundations, ed, R. G. Crystal et al., Vol. 1, New York, NY, Raven Press, 2224 see p. 199.
Serafini,  S., and Michaelson,  E., 1977, “Length and distribution of cilia in human and canine airways,” Bull. Eur. Physiopathol Respir., 13, pp. 551–559.
Davis, S. S., 1973, Rheological examination of sputum and saliva and the effect of drugs, In: Rheology of Biological Systems, H. L. Gabelnick and M. Litt, eds, Charles C. Thomas, Springfield, pp. 157–194.
Sleigh,  M. A., Blake,  J. R., and Liron,  N., 1988, “The propulsion of mucus by cilia,” J. Endocrinol., 137, pp. 726–741.


Grahic Jump Location
(a) Branching network; (b) single tube. Here x* is the axial position, R* is the airway radius, r* is the radial coordinate, z* is the local radial coordinate relative to the wall, and h* is the film thickness.
Grahic Jump Location
Ratio of cycle averaged total surfactant flux at the distal end of the airways once a periodic state has been reached to its steady state value for the no stretch case.
Grahic Jump Location
Ratio of cycle averaged fluid flux at the distal end of the airways once a periodic state has been reached to its steady state value for the no stretch case.
Grahic Jump Location
Transport versus time once a periodic steady state has been reached. Proximal end: (a) total surfactant transport, (b) liquid transport. Distal end: (c) total surfactant transport, (d) liquid transport. Here Δ=0.1.
Grahic Jump Location
Velocity field within film layer over one cycle once the steady periodic state has been reached, a t=t0+ti where ti=(a) 0; (b) TC/V/8; (c) TC/V/4; (d) 3TC/V/8; (e) TC/V/2; (f ) 5TC/V/8; (g) 3TC/V/4; (h) 7TC/V/8. The cycle averaged field is shown in (i). Here the amplitude is Δ=0.1, the stretch cycle is Tc/v=1 and t0 is a sufficiently large enough value so that the steady-state has been reached.
Grahic Jump Location
The influence of increasing the stretch cycle to Tc/v=10 on the flow field within the liquid layer during a cycle. The values of ti are the same as those given in the caption of Figure 5.
Grahic Jump Location
The influence of high frequency membrane cycling on the flow field within the liquid layer during a cycle. Here Tc/v=0.1. The values of ti are the same as those given in the caption of Figure 5.
Grahic Jump Location
Influence of stretching cycle on the surface surfactant concentration, Γ, plotted here versus axial position, x, at different times in stretching cycle. (a) Tc/v=1, (b) Tc/v=10, (c) Tc/v=0.1. Here Δ=0.1.



Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related Journal Articles
Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In