0
TECHNICAL PAPERS: Bone/Orthopedic

Creep Does Not Contribute to Fatigue in Bovine Trabecular Bone

[+] Author and Article Information
T. L. A. Moore

Exponent Failure Analysis Associates, Philadelphia, PA 19106

F. J. O’Brien

Department of Anatomy, Royal College of Surgeons in Ireland, Dublin 2, Ireland

L. J. Gibson

Department of Materials Science and Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139

J Biomech Eng 126(3), 321-329 (Jun 24, 2004) (9 pages) doi:10.1115/1.1762892 History: Received June 16, 2003; Revised December 04, 2003; Online June 24, 2004
Copyright © 2004 by ASME
Your Session has timed out. Please sign back in to continue.

References

Burr,  D. B., Forwood,  M. R., Fyhrie,  D. P., Martin,  R. B., Schaffler,  M. B., and Turner,  C. H., 1997, “Bone microdamage and skeletal fragility in osteoporotic and stress fractures,” J. Bone Miner. Res., 12(1), pp. 6–15.
Muir,  P., Johnson,  K. A., and Ruaux-Mason,  C. P., 1999, “In vivo matrix microdamage in a naturally occurring canine fatigue fracture,” Bone (N.Y.), 25(5), pp. 571–576.
Schaffler,  M. B., Choi,  K., and Milgrom,  C., 1995, “Aging and matrix microdamage accumulation in human compact bone,” Bone (N.Y.), 17(6), pp. 521–525.
Moore,  T. L. A., and Gibson,  L. J., 2003, “Fatigue of bovine trabecular bone,” J. Biomech. Eng., 125, pp. 761–768
Moore,  T. L. A., and Gibson,  L. J., 2003, “Fatigue microdamage of bovine trabecular bone,” J. Biomech. Eng., 125, pp. 769–776.
Freeman,  M. A. R., Todd,  R. C., and Ririe,  C. J., 1974, “The role of fatigue in the pathogenesis of senile femoral neck fractures,” J. Bone Jt. Surg., 56-B(4), pp. 698–702.
Daffner,  R. H., and Pavlov,  H., 1992, “Stress fractures: current concepts,” Am. J. Roentgenol., 159(8), pp. 245–252.
Egol,  K. A., Koval,  K. J., Kummer,  F., and Frankel,  V. H., 1998, “Stress fractures of the femoral neck,” Clin. Orthop. Relat. Res., 348, pp. 72–78.
Melton,  L. J. I., Kan,  S. H., Fyre,  M. A., Wahner,  H. W., O’Fallon,  W. M., and Riggs,  B. L., 1989, “Epidemiology of vertebral fractures in women,” Amer. J. Epidemiol., 129(5), pp. 1000–1011.
Mosekilde,  L., 1993, “Vertebral structure and strength in vivo and in vitro,” Calcified Tissue International, 53(Suppl 1), pp. S121–S126.
Carter,  D. R., and Hayes,  W. C., 1976, “Fatigue life of compact bone-I. Effects of stress amplitude, temperature and density,” J. Biomech., 9, pp. 27–34.
Carter,  D. R., Hayes,  W. C., and Schurman,  D. J., 1976, “Fatigue life of compact bone-II. Effects of microstructure and density,” J. Biomech., 9, pp. 211–218.
Carter,  D. R., and Caler,  W. E., 1983, “Cycle-dependent and time-dependent bone fracture with repeated loading,” J. Biomech. Eng., 105(2), pp. 166–170.
Caler,  W. E., and Carter,  D. R., 1989, “Bone creep-fatigue damage accumulation,” J. Biomech., 22(6-7), pp. 625–635.
Taylor,  D., O’Brien,  F., Prina-Mello,  A., Ryan,  C., O’Reilly,  P., and Lee,  T. C., 1999, “Compression data on bovine bone confirms that a “stressed volume” principle explains the variability of fatigue strength results,” J. Biomech., 32(11), pp. 1199–1203.
Zioupos,  P., Wang,  X. T., and Currey,  J. D., 1996, “Experimental and theoretical quantification of the development of damage in fatigue tests of bone and antler,” J. Biomech., 29(8), pp. 989–1002.
Zioupos,  P., 2001, “Accumulation of in-vivo fatigue microdamage and its relation to biomechanical properties in ageing human cortical bone,” J. Microsc., 201, pp. 270–278.
Zioupos,  P., Currey,  J. D., and Casinos,  A., 2001, “Tensile fatigue in bone: are cycles-or time to failure, or both, important?,” J. Theor. Biol., 210, pp. 389–399.
Pattin,  C. A., Caler,  W. E., and Carter,  D. R., 1996, “Cyclic mechanical property degradation during fatigue loading of cortical bone,” J. Biomech., 29(1), pp. 69–79.
Carter,  D. R., and Caler,  W. E., 1985, “A cumulative damage model for bone fracture,” J. Orthop. Res., 3(1), pp. 84–90.
Taylor,  D., and Prendergast,  P. J., 1997, “A model for fatigue crack propagation and remodelling in compact bone,” Proc. Inst. Mech. Eng., Part H: J. Eng. Med., 211(5), pp. 369–375.
Taylor,  D., 1997, “Bone maintenance and remodeling: a control system based on fatigue damage,” J. Orthop. Res., 15, pp. 601–606.
Fondrk,  M., Bahniuk,  E., Davy,  D. T., and Michaels,  C., 1988, “Some viscoplastic characteristics of bovine and human cortical bone,” J. Biomech., 21(8), pp. 623–630.
Rimnac,  C. M., Petko,  A. A., Santner,  T. J., and Wright,  T. M., 1993, “The effect of temperature, stress and microstructure on the creep of compact bovine bone,” J. Biomech., 26(3), pp. 219–228.
Mauch,  M., Currey,  J. D., and Sedman,  A. J., 1992, “Creep fracture in bones with different stiffnesses,” J. Biomech., 25, pp. 11–16.
Bowman,  S. M., Guo,  X. E., Cheng,  D. W., Keaveny,  T. M., Gibson,  L. J., Hayes,  W. C., and McMahon,  T. A., 1998, “Creep contributes to the fatigue behavior of bovine trabecular bone,” J. Biomech. Eng., 120(5), pp. 647–654.
Keaveny,  T. M., Guo,  X. E., Wachtel,  E. F., McMahon,  T. A., and Hayes,  W. C., 1994, “Trabecular bone exhibits fully linear elastic behavior and yields at low strains,” J. Biomech., 27(9), pp. 1127–1136.
Guo, X. E., 1993, “Fatigue of Trabecular Bone,” Ph.D. Thesis, Harvard University, Cambridge, Massachusetts.
Cheng, D. W., 1995, “Compressive High Cycle at Low Strain Fatigue Behavior of Bovine Trabecular Bone,” SM Thesis, Massachusetts Institute of Technology, Cambridge, Massachusetts.
Fyhrie,  D. P., and Schaffler,  M. B., 1994, “Failure mechanisms in human vertebral cancellous bone,” Bone (N.Y.), 15(1), pp. 105–109.
Arthur,  T. L., Pierce,  R. K., and Gibson,  L. J., 2000, “Microdamage in creep and monotonic compression of bovine trabecular bone,” Transactions of the Orthopaedic Research Society, 25, pp. 736.
Taylor,  M., Verdonschot,  N., Huiskes,  R., and Zioupos,  P., 1999, “A combined finite element method and continuum damage mechanics approach to simulate the in vitro fatigue behavior of human cortical bone,” J. Mater. Sci.: Mater. Med., 10, pp. 841–846.
Moore,  T. L. A., and Gibson,  L. J., 2002, “Microdamage accumulation in bovine trabecular bone in uniaxial compression,” J. Biomech. Eng., 124(1), pp. 63–71.
Fazzalari,  N. L., Forwood,  M. R., Manthey,  B. A., Smith,  K., and Kolesik,  P., 1998, “Three-dimensional confocal images of microdamage in cancellous bone,” Bone (N.Y.), 23(4), pp. 373–378.
Linde,  F., Hvid,  I., and Madsen,  F., 1992, “The effect of specimen geometry on the mechanical behavior of trabecular bone specimens,” J. Biomech., 25(4), pp. 359–368.
Zhu,  M., Keller,  T. S., and Spengler,  D. M., 1994, “Effects of specimen load-bearing and free surface layers on the compressive mechanical properties of cellular materials,” J. Biomech., 27(1), pp. 57–66.
van Rietbergen,  B., Muller,  R., Ulrich,  D., Ruegsegger,  P., and Huiskes,  R., 1999, “Tissue stresses and strain in trabeculae of a canine proximal femur can be quantified from computer reconstructions,” J. Biomech., 32, pp. 443–451.
Morgan,  E. F., and Keaveny,  T. M., 2001, “Dependence of yield strain of human trabecular bone on anatomic site,” J. Biomech., 34, pp. 569–577.
Gibson, L. J. and Ashby, M. F., 1997, Cellular Solids, Cambridge University Press, Cambridge.
Makiyama,  A. M., Vajjala,  S., and Gibson,  L. J., 2002, “Analysis of crack growth in a 3D Voronoi structure: A model for fatigue in low density trabecular bone,” J. Biomech. Eng., 124, pp. 512–520.
Hertzberg, R. W., 1989, Deformation and fracture mechanics of engineering materials, Wiley, New York.
Vajjhala,  S., Kraynik,  A. M., and Gibson,  L. J., 2000, “A cellular solid model for modulus reduction due to resorption of trabeculae in bone,” J. Biomech. Eng., 22, pp. 511–515.
Huang,  J.-S., and Gibson,  L. J., 2002, “Creep of aluminum Voronoi foams,” Mater. Sci. Eng., A, A339, pp. 220–226.

Figures

Grahic Jump Location
Residual strain at failure (corresponding to Esec/Eo=0.90) in the fatigue tests and upper bound estimate of creep strain at failure plotted against normalized stress.
Grahic Jump Location
Time to failure (corresponding to Esec/Eo=0.90) measured in the fatigue tests and lower bound estimate of time to failure for creep at the maximum normalized stress in the fatigue test, plotted against normalized stress.
Grahic Jump Location
Residual strain at the end of the fatigue test (at either specimen fracture or when 5% strain was reached) and upper bound estimate of creep strain at failure plotted against normalized stress.
Grahic Jump Location
Time to failure (at either specimen fracture or when 5% strain was reached) measured in the fatigue tests and lower bound estimate of time to failure for creep at the maximum normalized stress in the fatigue test, plotted against normalized stress.
Grahic Jump Location
Normalized stress versus number of cycles to failure curve for fatigue specimens loaded to failure (corresponding to Esec/Eo=0.90).
Grahic Jump Location
(a) Stress strain loops for a fatigue test at a normalized stress of 0.0095, illustrating the definitions of secant modulus and residual strain. For clarity, they are illustrated on the second to last cycle of loading in the fatigue test. The residual strains listed in Table 1 are for the cycle corresponding to ESEC/Eo=0.90. For this specimen Nf(at Esec/Eo=0.90)=1 and Nf final=14. (b) Secant modulus, Esec/Eo, plotted as a function of the number of cycles of loading, N, for the fatigue test in (a). (c) Stress-strain loops for a fatigue test at a normalized stress of 0.0075. For this specimen Nf(at Esec/Eo=0.90)=1 and Nf final=168. (d) Secant modulus, Esec/Eo, plotted as a function of the number of cycles of loading, N, for the fatigue test in (c).

Tables

Errata

Discussions

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related Journal Articles
Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In