Measurements of Mouse Pulmonary Artery Biomechanics

[+] Author and Article Information
Naomi C. Chesler

Department of Biomedical Engineering, University of Wisconsin, Madison, WIDepartment of Mechanical Engineering, University of Vermont, Burlington, VT

John Thompson-Figueroa, Ken Millburne

Department of Internal Medicine, University of Vermont, Burlington, VT

J Biomech Eng 126(2), 309-313 (May 04, 2004) (5 pages) doi:10.1115/1.1695578 History: Received May 27, 2003; Revised September 23, 2003; Online May 04, 2004
Copyright © 2004 by ASME
Your Session has timed out. Please sign back in to continue.


Gaine,  S. P., and Rubin,  L. J., 1998, “Primary Pulmonary Hypertension [Published Erratum Appears in Lancet 1999 Jan 2;353(9146):74],” Lancet, 352(9129), p. 719–25.
Jeffery,  T. K., and Wanstall,  J. C., 2001, “Pulmonary Vascular Remodeling: A Target for Therapeutic Intervention in Pulmonary Hypertension,” Pharmacological Therapies, 92(1), p. 1–20.
Huang,  W., Sher,  Y. P., Delgado-West,  D., Wu,  J. T., Peck,  K., and Fung,  Y. C., 2001, “Tissue Remodeling of Rat Pulmonary Artery in Hypoxic Breathing. I. Changes of Morphology, Zero-Stress State, and Gene Expression,” Ann. Biomed. Eng., 29(7), p. 535–51.
Huang,  W., Delgado-West,  D., Wu,  J. T., and Fung,  Y. C., 2001, “Tissue Remodeling of Rat Pulmonary Artery in Hypoxic Breathing. II. Course of Change of Mechanical Properties,” Ann. Biomed. Eng., 29(7), p. 552–62.
Chen,  E. P., Bittner,  H. B., Craig,  D. M., Davis,  R. D., and Van Trigt,  P., 1997, “Pulmonary Hemodynamics and Blood Flow Characteristics in Chronic Pulmonary Hypertension,” Ann. Thorac. Surg., 63(3), p. 806–13.
Domkowski,  P. W., Messier,  R. H., Cockerham,  J. T., Kot,  P. A., Diodato,  L. H., and Hopkins,  R. A., 2001, “Relationship of Hydraulic Impedance and Elasticity in the Pulmonary Artery of Maturing Newborn Pigs,” J. Surg. Res., 100(1), p. 116–26.
Segers,  P., Brimioulle,  S., Stergiopulos,  N., Westerhof,  N., Naeije,  R., Maggiorini,  M., and Verdonck,  P., 1999, “Pulmonary Arterial Compliance in Dogs and Pigs: The Three-Element Windkessel Model Revisited,” Am. J. Physiol., 277(2 Pt 2), p. H725–31.
Yen,  R. T., Fung,  Y. C., and Bingham,  N., 1980, “Elasticity of Small Pulmonary Arteries in the Cat,” J. Biomech. Eng., 102(2), p. 170–7.
Zhao,  J., Day,  J., Yuan,  Z. F., and Gregersen,  H., 2002, “Regional Arterial Stress-Strain Distributions Referenced to the Zero-Stress State in the Rat,” American Journal of Physiology-Heart & Circulatory Physiology, 282(2), p. H622–9.
Fagan,  K. A., Fouty,  B. W., Tyler,  R. C., Morris,  K. G., Hepler,  L. K., Sato,  K., LeCras,  T. D., Abman,  S. H., Weinberger,  H. D., Huang,  P. L., McMurtry,  I. F., and Rodman,  D. M., 1999, “The Pulmonary Circulation of Homozygous or Heterozygous eNOS-Null Mice Is Hyperresponsive to Mild Hypoxia,” J. Clin. Invest., 103(2), p. 291–9.
Fagan,  K. A., Tyler,  R. C., Sato,  K., Fouty,  B. W., Morris,  K. G., Huang,  P. L., McMurtry,  I. F., and Rodman,  D. M., 1999, “Relative Contributions of Endothelial, Inducible, and Neuronal NOS to Tone in the Murine Pulmonary Circulation,” Am. J. Physiol., 277(3 Pt 1), p. L472–8.
Yamashita,  T., Kawashima,  S., Ohashi,  Y., Ozaki,  M., Rikitake,  Y., Inoue,  N., Hirata,  K., Akita,  H., and Yokoyama,  M., 2000, “Mechanisms of Reduced Nitric Oxide/cGMP-Mediated Vasorelaxation in Transgenic Mice Overexpressing Endothelial Nitric Oxide Synthase,” Hypertension, 36(1), p. 97–102.
Thomson,  J. R., Machado,  R. D., Pauciulo,  M. W., Morgan,  N. V., Humbert,  M., Elliott,  G. C., Ward,  K., Yacoub,  M., Mikhail,  G., Rogers,  P., Newman,  J., Wheeler,  L., Higenbottam,  T., Gibbs,  J. S., Egan,  J., Crozier,  A., Peacock,  A., Allcock,  R., Corris,  P., Loyd,  J. E., Trembath,  R. C., and Nichols,  W. C., 2000, “Sporadic Primary Pulmonary Hypertension Is Associated with Germline Mutations of the Gene Encoding BMPR-II, a Receptor Member of the TGF-beta Family,” J. Med. Genet., 37(10), p. 741–5.
Machado,  R. D., Pauciulo,  M. W., Thomson,  J. R., Lane,  K. B., Morgan,  N. V., Wheeler,  L., Phillips,  J. A., Newman,  J., Williams,  D., Galie,  N., Manes,  A., McNeil,  K., Yacoub,  M., Mikhail,  G., Rogers,  P., Corris,  P., Humbert,  M., Donnai,  D., Martensson,  G., Tranebjaerg,  L., Loyd,  J. E., Trembath,  R. C., and Nichols,  W. C., 2001, “BMPR2 Haploinsufficiency as the Inherited Molecular Mechanism for Primary Pulmonary Hypertension,” Am. J. Hum. Genet., 68(1), p. 92–102.
Mulvany,  M. J., and Halpern,  W., 1977, “Contractile Properties of Small Arterial Resistance Vessels in Spontaneously Hypertensive and Normotensive Rats,” Circ. Res., 41(1), p. 19–26.
Warshaw,  D. M., Mulvany,  M. J., and Halpern,  W., 1979, “Mechanical and Morphological Properties of Arterial Resistance Vessels in Young and Old Spontaneously Hypertensive Rats,” Circ. Res., 45(2), p. 250–9.
Cipolla,  M. J., Harker,  C. T., and Porter,  J. M., 1996, “Endothelial Function and Adrenergic Reactivity in Human Type-II Diabetic Resistance Arteries,” J. Vasc. Surg., 23(5), p. 940–9.
Mandala,  M., Gokina,  N., and Osol,  G., 2002, “Contribution of Nonendothelial Nitric Oxide to Altered Rat Uterine Resistance Artery Serotonin Reactivity During Pregnancy,” Am. J. Med. Electron., 187(2), p. 463–8.
Coulson,  R. J., Cipolla,  M. J., Vitullo,  L., and Chesler,  N. C., 2004, “Mechanical Properties of Rat Middle Cerebral Arteries (NOS 3) With and Without Myogenic Tone,” J. Biomech. Eng. 126(1), p. 76–81.
Langewouters,  G. J., Wesseling,  K. H., and Goedhard,  W. J., 1984, “The Static Elastic Properties of 45 Human Thoracic and 20 Abdominal Aortas in Vitro and the Parameters of a New Model,” J. Biomech., 17(6), p. 425–35.
Steudel,  W., Ichinose,  F., Huang,  P. L., Hurford,  W. E., Jones,  R. C., Bevan,  J. A., Fishman,  M. C., and Zapol,  W. M., 1997, “Pulmonary Vasoconstriction and Hypertension in Mice with Targeted Disruption of the Endothelial Nitric Oxide Synthase (NOS 3) Gene,” Circ. Res., 81(1), p. 34–41.
Timoshenko, S., 1934, Theory of Elasticity. First ed. 1934, New York, NY: McGraw-Hill Book Company, Inc.
Fung, Y. C., 1990, Biomechanics: Motion, Flow, Stress and Growth. 1990, New York City: Springer-Verlag New York Inc.
Hudetz,  A. G., 1979, “Incremental Elastic Modulus for Orthotropic Incompressible Arteries,” J. Biomech., 12(9), p. 651–5.
Coulson,  R. J., Chesler,  N. C., Vitullo,  L., and Cipolla,  M. J., 2002, “Effects of Ischemia and Myogenic Activity on Active and Passive Mechanical Properties of Rat Cerebral Arteries,” American Journal of Physiololgy: Heart and Circulation Physiolology, 283(6), p. H2268–75.
Humphrey,  J. D., 1999, “An Evaluation of Pseudoelastic Descriptors Used in Arterial Mechanics,” J. Biomech. Eng., 121(2), p. 259–62.
Kornet,  L., Jansen,  J. R., Nijenhuis,  F. C., Langewouters,  G. J., and Versprille,  A., 1998, “The Compliance of the Porcine Pulmonary Artery Depends on Pressure and Heart Rate,” J. Physiol. (London), 512(Pt 3), p. 917–26.
Caputo,  L., Tedgui,  A., Poitevin,  P., and Levy,  B. I., 1992, “In Vitro Assessment of Diameter-Pressure Relationship in Carotid Arteries from Normotensive and Spontaneously Hypertensive Rats,” J. Hypertens. Suppl., 10(6), p. S27–30.
Stefanadis,  C., Dernellis,  J., Tsiamis,  E., Diamantopoulos,  L., Michaelides,  A., and Toutouzas,  P., 2000, “Assessment of Aortic Line of Elasticity Using Polynomial Regression Analysis,” Circulation, 101(15), p. 1819–25.
Hayashi,  K., Handa,  H., Nagasawa,  S., Okumura,  A., and Moritake,  K., 1980, “Stiffness and Elastic Behavior of Human Intracranial and Extracranial Arteries,” J. Biomech., 13(2), p. 175–84.
Bank,  A. J., Wang,  H., Holte,  J. E., Mullen,  K., Shammas,  R., and Kubo,  S. H., 1996, “Contribution of Collagen, Elastin, and Smooth Muscle to in Vivo Human Brachial Artery Wall Stress and Elastic Modulus,” Circulation, 94(12), p. 3263–70.
Zulliger,  M. A., Montorzi,  G., and Stergiopulos,  N., 2002, “Biomechanical Adaptation of Porcine Carotid Vascular Smooth Muscle to Hypo and Hypertension in Vitro,” J. Biomech., 35(6), p. 757–65.
Hayashi,  K., Takamizawa,  K., Nakamura,  T., Kato,  T., and Tsushima,  N., 1987, “Effects of Elastase on the Stiffness and Elastic Properties of Arterial Walls in Cholesterol-Fed Rabbits,” Atherosclerosis, 66(3), p. 259–67.
Faury,  G., Maher,  G. M., Li,  D. Y., Keating,  M. T., Mecham,  R. P., and Boyle,  W. A., 1999, “Relation between Outer and Luminal Diameter in Cannulated Arteries,” Am. J. Physiol., 277(5 Pt 2), p. H1745–53.


Grahic Jump Location
Isolated mouse pulmonary artery sutured to glass microcannulas, pre-stretched and pressurized to 5 mmHg. The interrupted white line is the VDA scan-line, which shows the axial position of measurements. The short sections of the scan-line that overlap the vessel wall boundaries are the LWT and RWT measured by analog edge detection. ID is the distance between the inner boundaries of the detected walls (shown in yellow). Scale bar shows 400 μm.
Grahic Jump Location
Representative raw data for OD and Pave versus time during the second cycle of the low pressure cyclic inflation/deflation protocol. Note occasional pressure over/undershoots during step changes, and some creep and creep recovery during inflation and deflation, respectively.
Grahic Jump Location
Outer diameter versus pressure for (a) low and (b) high pressure inflation (gray boxes) and deflation (open triangles) of isolated left main pulmonary arteries. Values are mean ±SD(−SD for inflation, +SD for deflation).
Grahic Jump Location
(a) Cauchy stress and (b) Hudetz’s incremental elastic modulus versus Almansi strain during inflation for low pressure (gray boxes) and high pressure (black boxes) testing protocols. Values are mean ±SD, with Einc values on a log scale.
Grahic Jump Location
Representative mouse pulmonary artery in cross-section stained with hematoxylin and eosin. Intact medial smooth muscle cells (SMC) and adventitial cells are visible; a few intact endothelial cells (EC) are visible.




Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related Journal Articles
Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In