0
TECHNICAL PAPERS: Soft Tissue

Nonlinear Viscoelastic Material Property Estimation of Lower Extremity Residual Limb Tissues

[+] Author and Article Information
Ergin Tönük

Middle East Technical University, Department of Mechanical Engineering, TR-06531 Ankara-Turkeye-mail: tonuk@metu.edu.tr

M. Barbara Silver-Thorn

Marquette University, Department of Biomedical Engineering, 1515 West Wisconsin Avenue, Milwaukee, Wisconsin 53233e-mail: B.Silver-Thorn@Marquette.edu

J Biomech Eng 126(2), 289-300 (May 04, 2004) (12 pages) doi:10.1115/1.1695575 History: Received July 10, 2003; Revised October 29, 2003; Online May 04, 2004
Copyright © 2004 by ASME
Your Session has timed out. Please sign back in to continue.

References

Silver-Thorn, M. B., Tonuk, E., and Kemp, J., 1999, “In Vivo Indentation of Lower Extremity Limb Soft Tissues,” Proc. 1st BMES EMBS Conference., Atlanta GA, 1 , p. 637.
Graf,  B. K., Vanderby,  R., Ulm,  J. M., Rogalski,  R. P., and Thielke,  R. J., 1994, “Effect of Preconditioning on the Viscoelastic Response of Primate Patellar Tendon,” Arthroscopy, 10, pp. 90–96.
Thornton,  G. M., Oliynyk,  M. A., Frank,  C. B., and Shrive,  N. G., 1997, “Ligament Creep cannot be Predicted from Stress Relaxation at Low Stress: A Biomechanical Study of the Rabbit Medial Collateral Ligament,” JBJS, 15, pp. 652–656.
Lakes,  R. S., and Vanderby,  R., 1999, “Interrelation of Creep and Relaxation: A Modeling Approach for Ligaments,” J. Biomech. Eng., 121, pp. 612–615.
Provenzo,  P., Lakes,  R., Keenan,  T., and Vanderby,  R., 2001, “Nonlinear Ligament Viscoelasticity,” Ann. Biomed. Eng., 29, pp. 908–914.
Hoaglund,  F. T., Jergesen,  H. E., Wilson,  L., Lamoreux,  L. W., and Roberts,  R., 1983, “Evaluation of the Problems and Needs of Veteran Lower-Limb Amputees in the San Francisco Bay Area during the Period 1977–1980,” J. Rehabil. Res. Dev., 20, pp. 57–71.
Sanders,  J. E., 1995, “Interface Mechanics in External Prosthetics: Review of Interface Stress Measurement Techniques,” Med. Biol. Eng. Comput., 33, pp. 509–516.
Silver-Thorn,  M. B., Steege,  J. W., and Childress,  D. S., 1996, “A Review of Prosthetic Interface Stress Investigations,” J. Rehabil. Res. Dev., 33, pp. 253–266.
Zachariah,  S. G., and Sanders,  J. E., 1996, “Interface Mechanics in Lower-Limb External Prosthetics: a Review of Finite Element Methods,” IEEE Trans. Rehabil. Eng., 4, pp. 288–302.
Zhang,  M., Mak,  A. F. T., and Roberts,  V. C., 1998, “Finite Element Modelling of a Residual Lower-Limb in a Prosthetic Socket: A Survey on the Development in the First Decade,” Med. Eng. Phys., 20, pp. 360–373.
Steege,  J. W., Schnur,  D. S., and Childress,  D. S., 1987, “Estimation of Pressure at the Below-Knee Socket by Finite Element Analysis,” ASME-BED, 4, pp. 39–43.
Steege, J. W., Schnur, D. S., Van Vorhis, L. R., and Rovick, J. S., 1987, “Finite Element Analysis as a Method of Pressure Estimation at the Below-Knee Socket Interface” Proc. 10th Ann. RESNA Conf., San Jose, CA, pp. 814–816.
Steege, J. W., and Childress, D. S., 1988, “Finite Element Estimation of Pressure at the Below-Knee Socket Interface,” Report of ISPO Workshop on CAD/CAM in Prosthetics and Orthotics, Seattle, WA, pp. 71–82.
Zhang,  M., Lord,  M., Turner-Smith,  A. R., and Robert,  V. C., 1995, “Development of a Non-Linear Finite Element Modeling of the Below-Knee Prosthetic Socket Interface,” Methods Exp. Phys., 17, pp. 559–566.
Silver-Thorn,  M. B., and Childress,  D. S., 1996, “Parametric Analysis Using Finite Element Method to Investigate Prosthetic Interface Stresses for Persons with Trans-Tibial Amputation,” J. Rehabil. Res. Dev., 33, pp. 227–238.
Vetrano,  S. L., and Silver-Thorn,  M. B., 1997, “Analysis of Residual Limb Bulk Soft Tissue Behavior Using Nonlinear Finite Element Methods,” ASME-BED, 35, pp. 201–202.
Commean,  P. K., Smith,  K. E., Vannier,  M. W., Szabo,  B. A., and Actis,  L. R., 1997, “Finite Element Modeling and Experimental Verification of Lower Extremity Shape Change under Load,” J. Biomech., 30, pp. 531–536.
Houston,  V. L., Luo,  G., Mason,  C. P., Beattie,  A. C., LaBlanc,  K. P., and Garbarini,  M., 1997, “Tissue Biomechanical Studies for Prosthetic Socket Design,” ASME-BED, 35, pp. 245–246.
Fisher,  C., Simpson,  G., and Reynolds,  D., 1999, “Development of a Finite Element Model of a Transtibial Socket Liner – An Initial Study,” Biomed. Sci. Instrum., 35, pp. 39–44.
Zachariah, S. G., and Sanders, J. E., 1999, “Pre-Stresses due to Trans-Tibial Socket Donning: A Nonlinear Finite Element Analysis with Contact,” Proc. 1st BMES EMBS Conference., Atlanta GA, 1 , p. 648.
Seguchi, Y., Tanaka, M., Akazawa, Y., Nakagawa, A., and Kitayama, A., 1989, “Finite Element Analysis and Load Identification of Above-Knee Prosthesis Socket,” 4th Int. ANSYS Conference, Pt. 2, pp. 12.31–12.44.
Brennan,  J. M., and Childress,  D. S., 1991, “Finite Element and Experimental Investigation of Above-Knee Amputee Limb/Prosthesis Systems: A Comparative Study,” ASME-BED, 20, pp. 547–550.
Mak, A. F. T., Yu, Y. M., Hong, M. L., and Chan, C., 1992, “Finite Element Models for Analyses of Stresses within Above-Knee Stumps,” Proc. 7th World Congress of ISPO, pp. 147–148.
Zhang,  M., and Mak,  A. F. T., 1996, “Finite Element Analysis of the Load Transfer between an Above-Knee Residual Limb and Its Prosthetic Socket—Roles of Interface Friction and Distal-End Boundary Conditions,” IEEE Trans. Rehabil. Eng., 4, pp. 337–346.
Douglas, T. S., Solomonidis, S. E., Lee, V. S. P., and Spence, W. D., 1997, “Automatic Boundary Extraction from Magnetic Resonance Images of the Residual Limb of a Trans-Femoral Amputee,” Proc. 19th Ann. Conf. EMBS, 2 , pp. 577–579.
Tanaka,  M., Akazawa,  Y., Nakagawa,  A., and Kitayama,  I., 1997, “Identification of Pressure Distribution at the Socket Interface of an Above-Knee Prosthesis,” Adv. Eng. Software, 28, pp. 379–384.
Zhang, M., Mak, A. F. T., and Mak, J., 1998, “Air Cushion Action at the Distal End of Above-Knee Stump with a Prosthetic Socket,” Proc. 20th Ann. Conf. EMBS, 5 , pp. 2754–2756.
Vannah,  W. M., and Childress,  D. S., 1996, “Indentor Tests and Finite Element Modeling of Bulk Muscular Tissue In Vivo,” J. Rehabil. Res. Dev., 33, pp. 239–252.
Silver-Thorn,  M. B., 1999, “In Vivo Indentation of Lower Extremity Soft Tissues,” IEEE Trans. Rehabil. Eng., 7, pp. 268–277.
Zheng,  Y. P., and Mak,  A. F. T., 1999, “Extraction of Quasi-Linear Viscoelastic Coefficients for Lower Limb Soft Tissues from Manual Indentation Experiment,” J. Biomech. Eng., 121, pp. 330–339.
Fung, Y. C. B., 1972, “Stress-Strain History Relations of Soft Tissues in Simple Elongation,” Biomechanics: Its Foundations and Objectives, Fung, Perrone and Anliker eds., Prentice Hall Inc. Inglewood, NJ, pp. 181–208.
Sauren,  A. A. H. J., and Rousseau,  E. P. M., 1983, “A Concise Sensitivity Analysis of the Quasi-Linear Viscoelastic Model Proposed by Fung,” J. Biomech. Eng., 105, pp. 92–95.
Dortmans,  L. J. M. G., Sauren,  A. A. H. J., and Rousseau,  E. P. M., 1984, “Coefficient Estimation Using Quasi-Linear Viscoelastic Model Proposed by Fung,” J. Biomech. Eng., 106, pp. 198–203.
Nigul,  I, and Nigul,  U., 1987, “On Algorithms of Evaluation of Fung’s Relaxation Function Coefficients,” J. Biomech. Eng., 20, pp. 343–352.
Johnnson,  G. A., Livesay,  G. A., Woo,  S. L. Y., and Rajagopal,  K. R., 1996, “A Single Integral Finite Strain Viscoelastic Model of Ligaments and Tendons,” J. Biomech. Eng., 118, pp. 221–226.
Miller,  K., and Chinzei,  K., 1997, “Constitutive Modelling of Brain Tissue: Experiment and Theory,” J. Biomech. Eng., 30, pp. 1115–1121.
Bowen,  R. M., 1980, “Incompressible Porous Media Models by the Use of the Theory of Mixtures,” Int. J. Eng. Sci., 18, pp. 1129–1148.
Spilker,  R. L., and Suh,  J. K., 1990, “Formulation and Evaluation of a Finite Element Model for the Biphasic Model of Soft Tissues,” Comput. Struct., 35, pp. 425–439.
Simon,  B. R., 1992, “Multiphase Poroelastic Finite Element Models of Soft Tissue Structures,” Appl. Mech. Rev., 45, pp. 191–218.
Liable,  J. P., Pflaster,  D., Simon,  B. R., Krag,  M. H., Pope,  M., and Haugh,  L. D., 1994, “A Dynamic Coefficient Estimation Procedure for Soft Tissue Using a Poroelastic Finite Element Model,” J. Biomech. Eng., 116, pp. 19–29.
Butler,  S. L., Kohles,  S. S., Thielke,  R. J., Chen,  C., and Vanderby,  R., 1997, “Interstitial Fluid Flow in Tendons or Ligaments: A Porous Medium Finite Element Simulation,” Med. Biol. Eng. Comput., 35, pp. 742–746.
Simon,  B. R., Kaufman,  M. V., Liu,  J., and Baldwin,  A. L., 1998, “Porohyperelastic-Transport-Swelling Theory Material Properties and Finite Element Models for Large Arteries,” Int. J. Solids Struct., 35, pp. 5021–5031.
Iding,  R. H., Pister,  K. S., and Taylor,  R. L., 1974, “Identification of Nonlinear Elastic Solids by a Finite Element Method,” Comput. Methods Appl. Mech. Eng., 4, pp. 121–142.
Lin,  H. S., Liu,  Y. K., Ray,  G., and Nikravesh,  P. E., 1978, “Systems Identification for Material Properties of the Intervertebral Joint,” J. Biomech., 11, pp. 1–14.
Wineman,  A., Wilson,  D., and Melvin,  J. W., 1979, “Material Identification of Soft Tissue Using Membrane Inflation,” J. Biomech., 12, pp. 841–850.
Ray, G., and Ghista, D. N., 1980, “A Direct Computational Algorithm to Estimate In Vivo Constitutive Properties of Some Cardiovascular Structures,” Finite Elements in Biomechanics, B. R. Simon, ed., Univ. of Arizona, 2 , pp. 623–637.
Pao, Y. C., 1982, “Finite Elements in Stress Analysis and Estimation of Mechanical Properties of Working Heart,” Finite Elements in Biomechanics, R. H. Gallagher, B. R. Simon and P. C. Johnson, J. F. Gross, Ed. Wiley, 127-153.
Guccione,  J. M., McCulloch,  A. D., and Waldman,  L. K., 1991, “Passive Material Properties of Intact Ventricular Myocardium Determined from a Cylindrical Model,” J. Biomech. Eng., 113, pp. 42–55.
Oomenns,  C. W. J., Ratingen,  M. R. V., Janssen,  J. D., Kok,  J. J., and Hendricks,  M. A. N., 1993, “A Numerical-Experimental Method for a Mechanical Characterization of Biological Materials,” J. Biomech., 26, pp. 617–621.
Novak,  V. P., Yin,  F. C. P., and Humphrey,  J. D., 1994, “Regional Mechanical Properties of Passive Myocardium,” J. Biomech., 27, pp. 403–412.
Vorp,  D. A., Rajagopal,  K. R., Smolinski,  P. J., and Borovetz,  H. S., 1995, “Identification of Elastic Properties of Homogenious Orthotropic Vascular Segments in Distension,” J. Biomech., 28, pp. 501–512.
Wang,  J. L., Parnianpour,  M., Shirazi-Adl,  A., and Engin,  A. E., 1996, “Development of the Viscoleastic Finite Element Model of Lumbar Motion Segment,” ASME PD, 77, pp. 51–56.
Nagaraj,  A., Ramani,  K., Kane,  B. J., Greene,  R., Dove,  E. L., Chandran,  K. B., and McPherson,  D. D., 1997, “In-Vivo Regional Assessment of Atherosclerotic Vascular Material Properties Using Three Dimensional Intravascular Ultrasound Reconstruction and Finite Element Analysis,” ASME-BED, 35, pp. 463–464.
Flynn,  D. M., Peura,  G. D., Grigg,  P., and Hoffman,  A. H., 1998, “A Finite Element Based Method to Determine the Properties of Planar Soft Tissue,” J. Biomech. Eng., 120, pp. 202–210.
Steege,  J. W., and Childress,  D. S., 1988, “Finite Element Modeling of the Below-Knee Socket and Limb: Phase II,” Proc. Bioeng. Conf. (ASME-BED), pp. 121–129.
Vannah, W. M., 1990, “Indentor Tests and Finite Element Modeling of Bulk Muscular Soft Tissue In Vivo,” Ph.D. Dissertation, Northwestern University, Evanston, IL.
Vetrano, S. L., and Silver-Thorn, M. B., 1997, “Analysis of Residual Limb Bulk Soft Tissue Behavior Using Nonlinear Finite Element Methods,” Proc. 2nd Ann. Conf. Finite Element Methods Bioeng., MARC Analysis Research Corp., University of Minneapolis, pp. 29–36.
Tonuk,  E., and Silver-Thorn,  M. B., 2003, “Nonlinear Elastic Material Property Estimation of Lower Extremity Residual Limb Tissue,” IEEE Trans. Neural Sys. Rehab. Eng., 11(1), pp. 43–53.
Pathak,  A. P., Silver-Thorn,  M. B., Thierfelder,  C. A., and Prieto,  T. E., 1998, “A Rate-Controlled Indentor for In Vivo Analysis of Residual Limb Tissues,” IEEE Trans. Rehabil. Eng., 6, pp. 12–20.
Tonuk, E., and Silver-Thorn, M. B., 1999, “Nonlinear Viscoelastic Material Property Estimation for Lower Extremity Residual Limbs,” Proc. 1st BMES EMBS Conference., Atlanta GA, 1 , p. 645.
Simo,  J. C., 1987, “On a Fully Three-Dimensional Viscoelastic Damage Model: Formulation and Computational Aspects,” Comput. Methods Appl. Mech. Eng., 60, pp. 153–173.
Gerhard,  A. H., and Simo,  J. C., 1996, “A New Viscoelastic Constitutive Model for Continuous Media at Finite Thermomechanical Changes,” Int. J. Solids Struct., 33, pp. 3019–3034.
Sanders,  J. E., and Daly,  C. H., 1993, “Measurement of Stresses in Three Orthogonal Directions at the Residual Limb-Prosthetic Socket Interface,” IEEE Trans. Rehabil. Eng., 1, pp. 79–85.
Silver-Thorn, M. B., 1991, “Prediction and Experimental Verification of Residual Limb/Prosthetic Socket Interface Pressures for Below-Knee Amputees,” Ph.D. Dissertation, Northwestern University, Evanston, IL.
Tonuk, E., and Silver-Thorn, M. B., 1999, “Effect of Curvature on Lower Extremity Residual Limb Models,” Proc. 1st BMES EMBS Conference., Atlanta GA, 1 , p. 639.
Malvern, L. E., 1969, “Introduction to the Mechanics of a Continuous Medium,” Prentice-Hall Inc., Englewood Cliffs, New Jersey, pp. 313–319.
Lakes, R. S., 1998, “Viscoelastic Solids,” CRC Press, Washington D. C., pp. 23–30.

Figures

Grahic Jump Location
One-dimensional mechanical representation of the generalized Kelvin-Voigt linear viscoelastic material model (F=generalized force, d=generalized displacement, ki=generalized spring constant, and ci=generalized viscous damper coefficient)
Grahic Jump Location
Experimental force and displacement (Subject 6, proximal popliteal area; gray lines) during relaxation (a) and creep (b) and regressed Prony series models (black lines)
Grahic Jump Location
Experimental setup (left) and finite element simulation (right) of the indentation experiment
Grahic Jump Location
Soft tissue elastic material coefficients (bars) and normalized sum of square error, NSSEi (crosses), during elastic material coefficient estimation during initial loading of relaxation (Subject 6, proximal popliteal area) (a). Also shown is the experimental and simulated relaxation response during the viscoelastic coefficient search process (b)
Grahic Jump Location
Soft tissue elastic material coefficients (bars) and normalized sum of square error, NSSEi (crosses), during elastic material coefficient estimation during initial loading of creep (Subject 6, proximal popliteal area) (a). Also shown is the simulation of soft tissue creep during viscoelastic material coefficient estimation (b). Finally, the elastic material coefficients (bars) and NSSEi (crosses), during refinement of the elastic material coefficients (c) are shown, as are the final viscoelastic material coefficients (d)
Grahic Jump Location
Relaxation simulation with creep-based time-dependent and relaxation-based elastic material coefficient estimates (“creep time dependent coefficients”), and creep-based time-dependent and elastic material coefficient estimates (“creep material coefficients”) (a). Creep simulation with relaxation-based time-dependent and creep-based material coefficient estimates (“relaxation time dependent coefficients”), and relaxation-based time-dependent and elastic material coefficient estimates (“relaxation material coefficients”) (b)
Grahic Jump Location
Distribution of the non-dimensional ratio of the nonlinear elastic material coefficient, C̃i, (a), and the time-dependent material coefficient estimates, δ̃j, (b), τ̃j, (c)

Tables

Errata

Discussions

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related Journal Articles
Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In