TECHNICAL PAPERS: Fluids/Heat/Transport

Computational Fluid Dynamics (CFD) Study of the 4th Generation Prototype of a Continuous Flow Ventricular Assist Device (VAD)

[+] Author and Article Information
Xinwei Song, Houston G. Wood

Department of Mechanical and Aerospace Engineering, University of Virginia, Charlottesville, Virginia USA

Don Olsen

Utah Artificial Heart Institute, Salt Lake City, Utah USA

J Biomech Eng 126(2), 180-187 (May 04, 2004) (8 pages) doi:10.1115/1.1688776 History: Received November 25, 2002; Revised June 24, 2003; Online May 04, 2004
Copyright © 2004 by ASME
Your Session has timed out. Please sign back in to continue.


American Medical Association, 2002, “Heart Disease and Stroke Statistics—2003 Update,” American Heart Association, Dallas, TX.
DeBakey,  M. E., 2000, “The Odyssey of the Artificial Heart,” Artif. Organs, 24(6), pp. 405–11.
Olsen,  D. B., 2000, “The History of Continuous-Flow Blood Pumps,” Artif. Organs, 24(6), pp. 401–4.
Song,  X., Throekmorton,  A. L., Untaroiu,  A., Patel,  S., Allaire,  P. E., Wood,  H. G., and Olsen,  D. B., 2003, “Axial Flow Blood Pumps,” ASAIO J., 49, pp. 355–364.
Burgreen,  G. W., Antaki,  J. F., and Griffith,  B. P., 1996, “A Design Improvement Strategy for Axial Blood Pumps Using Computational Fluid Dynamics,” ASAIO J., 42, pp. M354–M360.
Miyazoe,  Y., Sawairi,  T., Ito,  K., Konishi,  Y., Yamane,  T., Nishida,  M., Masuzawa,  T., Takiura,  K., and Taenaka,  Y., , “Computational Fluid Dynamic Analyses to Establish Design Process of Centrifugal Blood Pumps,” Artif. Organs, 23 , pp. 381–385.
Wood,  H. G., Anderson,  J. B., Allaire,  P. E., McDaniel,  J. C., and Bearnson,  G., 1999, “Numerical Solution for Blood Flow in a Centrifugal Assist Device,” Int. J. Artif. Organs, 22(12), pp. 827–36.
Allaire,  P. E., Wood,  H. G., Awad,  R. S., and Olsen,  D. B., 1999, “Blood Flow in a Continuous Flow Ventricular Assist Device,” Artif. Organs, 27(8), pp. 769–73.
Anderson,  J. B., Wood,  H. G., Allaire,  P. E., Bearnson,  G., and Khanwilkar,  P., 2000, “Computational Flow Study of the CFVAD3 Blood Pump,” Artif. Organs, 24(5), pp. 377–85.
Anderson,  J. B., Wood,  H. G., Allaire,  P. E., McDaniel,  J. C., Olsen,  D. B., and Bearnson,  G., 2000, “Numerical Studies of Blood Shear and Washing in a Continuous Flow Ventricular Assist Device,” ASAIO J., 46(4), pp. 486–94.
Apel,  J., Neuael,  F., and Reul,  H., 2001, “Computational Fluid Dynamics and Experimental Validation of a Microaxial Blood Pump,” ASAIO J., 47(5), pp. 552–8.
Curtas,  A. R., Wood,  H. G., Allaire,  P. E., McDaniel,  J. C., Day,  S. W., and Olsen,  D. B., 2002, “Computational Fluid Dynamics Modeling of Impeller Designs for the HeartQuest Left Ventricular Assist Device,” ASAIO J., 48(5), pp. 552–61.
Allaire,  P. E., Kin,  H. C., and Maslen,  E. H., 1996, “Prototype Continuous Flow Ventricular Assist Device Supported on Magnetic Bearings,” Artif. Organs, 20(6), pp. 582–90.
Kanwilkar,  P. S., Olsen,  D. B., and Beamson,  G. B., 1996, “Using Hybrid Magnetic Bearings to Completely Suspend the Impeller of a Ventricular Assist Device,” Artif. Organs, 20(6), pp. 597–604.
Joles,  J. A., Willekes-Koolschijn,  N., and Koomans,  H. A., 1997, “Hypoalbuminemia Causes High Blood Viscosity by Increasing Red Cell Lysophosphatidylcholine,” Kidney Int., 52(3), pp. 761–770.
Eckmann,  D. M., Bowers,  S., Stecker,  M., and Cheung,  A. T., 2000, “Hematocrit, Volume Expander, Temperature, and Shear Rate Effects on Blood Viscosity,” Anesth. Analg. (Baltimore), 91(3), pp. 539–545.
Day,  S. W., McDaniel,  J. C., Wood,  H. G., Allaire,  P. E., Song,  X., Lemire,  P. P., and Miles,  S. D., 2002, “A Prototype HeartQuest™ Ventricular Assist Device for Particle Image Velocimetry Measurements,” Artif. Organs, 26(11), pp. 1002–1005.
Song,  X., Wood,  H. G., Day,  S. W., and Olsen,  D. B., , “Studies of Turbulence Models in a CFD Model of a Blood Pump,” Artif. Organs, 27 (10), pp. 938–941.
Bludszuweit,  C., 1995, “Model for a General Mechanical Blood Damage Prediction,” Artif. Organs, 19(7), pp. 583–89.
Heuser,  G., and Optiz,  R., 1980, “A Couette Viscometer for Short Time Shearing in Blood,” Biorheology, 17, pp. 17–24.
Giersicpen,  M., Warzinger,  L. J., Opitz,  R., and Reul,  H., 1990, “Estimation of Shear Stress-related Blood Damage in Heart Valve Prostheses—in vitro Comparison of 25 Aortic Valves,” Int. J. Artif. Organs, 13(5), pp. 300–306.
Apel,  J., Paul,  R., Klaus,  S., Siess,  T., and Reul,  H., 2001, “Assessment of Hemolysis Related Quantities in a Microaxial Blood Pump by Computational Fluid Dynamics,” Artif. Organs, 25(5), pp. 341–347.
Chan,  W. K., Wong,  Y. W., Ding,  Y., Chua,  L. P., and Yu,  S. C. M., 2002, “Numerical Investigation of the Effect of Blade Geometry on Blood Trauma in a Centrifugal Blood Pump,” Artif. Organs, 16(9), pp. 785–793.
Song,  X., Throekmorton,  A. L., Wood,  H. G., Antaki,  J. F., and Olsen,  D. B., 2003, “CFD Prediction of Blood Damage in a Centrifugal Pump,” Artif. Organs, 27(10), pp. 935–937.
Stepanoff A. J., 1957, Centrifugal and Axial Flow Pumps, Krieger Publishing Company, Malabar, FL.
Karassik I. J., Krutzsch W. C., Fraser W. H., and Messina J. P., 1985, Pump Handbook (Second Edition), McGraw-Hill Publishing Company, New York, NY.
Sutera,  S. P., and Mehrjardi,  M. H., 1975, “Deformation and Fragmentation of Human Red Blood Cells in Turbulent Shear Flow,” Biophys. J., 15, pp. 1–10.
Zante,  E. V., Strazisar,  A. J., and Wood,  J. R., 2000, “Recommendations for Achieving Accurate Numerical Simulation of Tip Clearance Flows in Transonic Compressor Rotors,” ASME J. Turbomach., 122, pp. 733–42.


Grahic Jump Location
The manufacture drawing of CF4
Grahic Jump Location
3-D grid distribution near a blade
Grahic Jump Location
Pressure rise in the impeller
Grahic Jump Location
Vortex occurred in the leading edge region
Grahic Jump Location
Isotonic plot of stress in blade-tip surface
Grahic Jump Location
Distribution of blood damage index for population of 388 streamlines studied
Grahic Jump Location
Stress power versus time for a particle
Grahic Jump Location
Retrograde flow through tip clearance
Grahic Jump Location
Percentage of retrograde flow. Top is back clearance. Bottom is tip clearance.



Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related Journal Articles
Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In