A Novel Robotic System for Joint Biomechanical Tests: Application to the Human Knee Joint

[+] Author and Article Information
Hiromichi Fujie

Biomechanics Laboratory, Kogakuin University, 2665-1 Nakanomachi, Hachioji, Tokyo 192-0015, Japan

Takeshi Sekito

Toyota Motor Corp., Toyota, Aichi 471-8572, Japan

Akiyuki Orita

Kawatetsu Systems Inc., Koto-ku, Tokyo 136-8532, Japan

J Biomech Eng 126(1), 54-61 (Mar 09, 2004) (8 pages) doi:10.1115/1.1644567 History: Received November 18, 1999; Revised August 11, 2003; Online March 09, 2004
Copyright © 2004 by ASME
Your Session has timed out. Please sign back in to continue.


Ahmed,  A. M., Hyder,  A., Burke,  D. L., and Chan,  K. H., 1987, “In Vitro Ligament Tension Pattern in the Flexed Knee in Passive Loading,” J. Orthop. Res., 5, pp. 217–230.
Bach,  J. M., and Hull,  M. L., 1995, “A New Load Application System for In Vitro Study of Ligamentous Injuries to the Human Knee Joint,” ASME J. Biomech. Eng., 117, pp. 373–382.
Hollis,  J. M., Takai,  S., Adams,  D. J., Horibe,  S., and Woo,  S. L.-Y., 1991, “The Effects of Knee Motion and External Loading on the Length of the Anterior Cruciate Ligament (ACL): A Kinematic Study,” ASME J. Biomech. Eng., 113, pp. 208–214.
Lewis,  J. L., Lew,  W. D., and Schmidt,  J., 1988, “Description and Error Evaluation of an In Vitro Knee Joint Testing System,” ASME J. Biomech. Eng., 110, pp. 238–248.
MacWilliams, B. A., Chao, E. Y., and Mejia, L. C., 1994, “Design and Performance Features of a Knee Dynamic Simulator,” Abstract, Second World Congress of Biomechanics, Blankevoort, L., and Kooloos, J. G. M., eds., p. 364.
Markolf,  K. L., Gorek,  J. F., Kabo,  J. M., and Shapiro,  M. S., 1990, “Direct Measurement of Resultant Forces in the Anterior Cruciate Ligament,” J. Bone Jt. Surg., 72A, pp. 557–567.
Mills,  O. S., and Hull,  M. L., 1991, “Rotational Flexibility of the Human Knee Due to Varus/Valgus and Axial Moments in Vivo,” J. Biomech., 24, pp. 673–690.
Berns,  G. S., Hull,  M. L., and Patterson,  H. A., 1990, “Implementation of a Five Degree of Freedom Automated System to Determine Knee Flexibility In Vitro,” ASME J. Biomech. Eng., 112, pp. 392–400.
Berns,  G. S., Hull,  M. L., and Patterson,  H. A., 1992, “Strain in the Anteromedial Bundle of the Anterior Cruciate Ligament Under Combination Loading,” J. Orthop. Res., 10, pp. 167–176.
Butler,  D. L., Noyes,  F. R., and Grood,  E. S., 1980, “Ligamentous Restraints to Anterior-Posterior Drawer in the Human Knee,” J. Bone Jt. Surg., 62A, pp. 259–270.
Fukubayashi,  B., Torzilli,  P. A., Sherman,  M. F., and Warren,  R. F., 1982, “An In Vitro Biomechanical Evaluation of Anterior-Posterior Motion of the Knee,” J. Bone Jt. Surg., 64A, pp. 258–264.
Grood,  E. S., Noyes,  F. R., Butler,  D. L., and Suntay,  W. J., 1981, “Ligamentous and Capsular Restraints Preventing Straight Medial and Lateral Laxity in Intact Human Cadaver Knees,” J. Bone Jt. Surg., 63A, pp. 1257–1269.
Hollis,  J. M., 1995, “A Six-Degree-of Freedom Test System for the Study of Joint Mechanics and Ligament Forces,” ASME J. Biomech. Eng., 117, pp. 383–389.
Takai,  S., Woo,  S. L.-Y., Livesay,  G. A., Adams,  D. J., and Fu,  F. H., 1993, “Determination of the In Situ Load on the Human Anterior Cruciate Ligament,” J. Orthop. Res., 11, pp. 686-695.
Fujie,  H., Livesay,  G. A., Woo,  S. L.-Y., Kashiwaguchi,  S., and Blomstrom,  G., 1995, “The Use of a Universal Force-Moment Sensor to Determine In-Situ Forces in Ligaments: A New Methodology,” ASME J. Biomech. Eng., 117, pp. 1–7.
Livesay,  G. A., Fujie,  H., Kashiwaguchi,  S., Morrow,  D. A., Fu,  F. H., and Woo,  S. L.-Y., 1995, “Determination of the In Situ Forces and Force Distribution Within the Human Anterior Cruciate Ligament,” Ann. Biomed. Eng., 23, pp. 467–474.
Livesay,  G. A., Rudy,  T. W., Woo,  S. L.-Y., Runco,  T. J., Sakane,  M., Li,  G., and Fu,  F. H., 1997, “Evaluation of the Effect of Joint Constraints on the In Situ Force Distribution in the Anterior Cruciate Ligament,” J. Orthop. Res., 15, pp. 278–284.
Chao,  E. Y., 1980, “Justification of a Triaxial Goniometer for the Measurement of Joint Rotation,” J. Biomech., 13, pp. 989–1006.
Grood,  E. S., and Suntay,  W. J., 1983, “A Joint Coordinate System for the Clinical Description of Three-Dimensional Motions: Application to the Knee,” ASME J. Biomech. Eng., 105, pp. 136–144.
Fujie,  H., Mabuchi,  K., Woo,  S. L.-Y., Livesay,  G. A., Arai,  S., and Tsukamoto,  Y., 1993, “The Use of Robotics Technology to Study Human Joint Kinematics: A New Methodology,” ASME J. Biomech. Eng., 115, 211–217.
Fujie,  H., Livesay,  G. A., Fujita,  M., and Woo,  S. L.-Y., 1996, “Forces and Moments in Six-DOF at the Human Knee Joint: Mathematical Description for Control,” J. Biomech., 29, pp. 1577–1585.
Fujie, H., Mabuchi, K., Itoman, M., Tsukamoto, Y., Livesay, G. A., Woo, S. L.-Y., Sasada, T., and Ikeuchi, K., 1995, “The Use of a Robotic System for the Study of Joint Biomechanics: In-Situ Force in the Human Anterior Cruciate Ligament,” Proceedings, 1995 Advances in Bioengineering (ASME), Hull, M. L., ed., Vol. 31, pp. 219–220.
Rudy,  T. W., Livesay,  G. A., Woo,  S. L.-Y., and Fu,  F. H., 1996, “A Combined Robotic/Universal Force Sensor Approach to Determine In Situ Forces of Knee Ligaments,” J. Biomech., 29, pp. 1357–1360.
Woo,  S. L.-Y., Chan,  S. S., and Yamaji,  T., 1997, “Biomechanics of Knee Ligament Healing, Repair and Reconstruction,” J. Biomech., 30, pp. 431–439.
Sakane,  M., Fox,  R. J., Woo,  S. L.-Y., Livesay,  G. A., Li,  G., and Fu,  F. H., 1997, “In-Situ Forces in the Anterior Cruciate Ligament and Its Bundles in Response to Anterior Tibial Loads,” J. Orthop. Res., 15, pp. 285–293.
Fox,  R. J., Harner,  C. D., Sakane,  M., Carlin,  G. J., and Woo,  S. L.-Y., “Determination of the In Situ Forces in the Human Posterior Cruciate Ligament Using Robotic Technology,” Am. J. Sports Med., 26, 395–401.
Hoher,  J., Harner,  C. D., Vogrin,  T. M., Baek,  G. H., Carlin,  G. J., and Woo,  S. L.-Y., 1998, “In Situ Forces in the Posterolateral Structures of the Knee under Posterior Tibial Loading in the Intact and Posterior Cruciate Ligament-Deficient Knee,” J. Orthop. Res., 16, pp. 675–681.
Kanamori,  A., Woo,  S. L.-Y., Ma,  C. B., Zeminski,  J., Rudy,  T. W., Li,  G., and Livesay,  G. A., 2000, “The Forces in the Anterior Cruciate Ligament and Knee Kinemtics During a Simulated Pivot Shift Test: A Human Cadaveric Study Using Robotic Technology,” Arthroscopy, 16, pp. 633–639.
Li,  G., Rudy,  T. W., Sakane,  M., Kanamori,  A., Ma,  C. B., and Woo,  S. L.-Y., 1999, “The Importance of Quadriceps and Hamstring Muscle Loading on Knee Kinematics and In-Situ Forces in the ACL,” J. Biomech., 32, pp. 395–400.
Stone,  J. D., Carlin,  G. J., Ishibashi,  Y., Harner,  C. D., and Woo,  S. L.-Y., “Assessment of Posterior Cruciate Ligament Graft Performance Using Robotic Technology,” Am. J. Sports Med., 24, pp. 824–827.
Sekito, T., Fujie, H., Ota, Y., and Kozaburo, H., 1997, “Development of a Novel Robotic Simulator for the Analysis of Knee Mechanical Function,” Proceedings, 1997 Bioengineering Conference (ASME), Chandran, K. B., Vanderby, R., Jr., and Hefzy, M. S., eds., Vol. 35, pp. 393–394.
Blankevoort, L., Kwak, S. D., Ahmad, C. S., Gardner, T. R., Grelsamer, R. P., Henry, J. H., Ateshian, G. A., and Mow, V. C., 1996, “Effects of Global and Anatomic Coordinate Systems on Knee Joint Kinematics,” Abstract, 10th Conference of the European Society of Biomechanics, Sloten, J. V., Lowet, G., Audekercke, R. V., and Perre, G. V. D., eds., pp. 260.
Blankevoort,  L., Huiskes,  R., and de Lange,  A., 1990, “Helical Axes of Passive Knee Joint Motions,” J. Biomech., 23(12), pp. 1219–1229.
Paul, R. P., 1981, Robot Manipulators: Mathematics, Programming, and Control, The MIT Press, Cambridge, pp. 217–220.
ASTM, 1996, Annual Book of ASTM (Standard Practice for Use of the Terms Precision and Bias in ASTM Test Methods), ASTM, Designation: E177-90a.
Woo,  S. L.-Y., Hollis,  J. M., Adams,  D. J., Lyon,  R. M., and Takai,  S., “Tensile Properties of the Human Femur-Anterior Cruciate Ligament-Tibia Complex: The Effects of Specimen Age and Orientation,” Am. J. Sports Med., 19, pp. 217–225.


Grahic Jump Location
Diagram of 6-DOF robotic system designed and developed in the present study. The manipulator of the system consisted of the upper mechanism (two translational and three rotational axes) and the lower mechanism (a translational axis). The reference coordinate system is shown by X-, Y-, and Z-axes.
Grahic Jump Location
Diagram depicting the method used to fix the femoral coordinate system, Cf, to the femur. The position and orientation of the coordinate system were fixed to the femur using the insertion sites of the collateral ligaments and the perimeters of the femur.
Grahic Jump Location
Diagram illustrating the knee joint coordinate system (KJCS), C, in relation to the femoral and tibial coordinate systems, Cf and Ct respectively, sensor coordinate system, Cs, and manipulator coordinate system, Cm. The differential motions, dθ and mdΔ, described with respect to C and Cm respectively, were related by Jacobians, J1,J2, and J3. The forces/moments, F and sF, described with respect to C and Cs respectively, were related by Jacobians J1 and J2.
Grahic Jump Location
Block diagram of the hybrid position/force control of the human knee specimen in the robotic system. The force/moment control was achieved by transforming differential force/moment to differential displacement using a compliance R.
Grahic Jump Location
Plots of temporal changes of anterior and proximal displacements and forces and moments of the human knee during the application of a cyclic anterior drawer force (0–100 N) with a constant compressive force (100 N). The medial, anterior, and proximal DOFs in translation and force, and extension, internal, and varus DOFs in rotation and moment are indicated as positive.



Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related Journal Articles
Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In