0
TECHNICAL PAPERS

3-D Anatomically Based Dynamic Modeling of the Human Knee to Include Tibio-Femoral and Patello-Femoral Joints

[+] Author and Article Information
Dumitru I. Caruntu, Mohamed Samir Hefzy

Biomechanics and Assistive Technology Laboratory, Department of Mechanical, Industrial and Manufacturing Engineering, The University of Toledo, Toledo, Ohio, USA 43606e-mail: mhefzy@eng.utoledo.edu

J Biomech Eng 126(1), 44-53 (Mar 09, 2004) (10 pages) doi:10.1115/1.1644565 History: Received August 20, 2002; Revised August 25, 2003; Online March 09, 2004
Copyright © 2004 by ASME
Your Session has timed out. Please sign back in to continue.

References

Hefzy,  M. S., and Grood,  E. S., 1988, “Review of Knee Models,” Appl. Mech. Rev., 41(1), pp. 1–3.
Hefzy,  M. S., and Abdel-Rahman,  E. M., 1995, “Dynamic Modeling of the Human Knee Joint: Formulation and Solution Technique. A Review Paper,” J. Biomed. Eng.: Application, Basis and Communication, 7(1), pp. 5–21.
Hefzy,  M. S., and Cooke,  T. D. V., 1996, “Review of Knee Models: 1996 Update,” Appl. Mech. Rev., 49(10), pp. 187–193.
Donahue,  T. L. H., Hull,  M. L., Rashid,  M. M., and Jacobs,  C. R., 2002, “A Finite Element Model of the Human Knee Joint for the Study of Tibio-Femoral Contact,” J. Biomech. Eng., 124, pp. 273–280.
Suggs,  J., Wang,  C., and Li,  G., 2003, “The Effect of Graft Stiffness on Knee Joint Biomechanics after ACL Reconstruction—A 3D Computational Simulation,” Clin. Biomech. (Los Angel. Calif.), 18, pp. 35–43.
Li,  G., Suggs,  J., and Gill,  T., 2002, “The Effect of Anterior Cruciate Ligament Injury on Knee Joint Function under a Simulated Muscle Load: A Three-Dimensional Computational Simulation,” Ann. Biomed. Eng., 30, pp. 713–720.
Liu,  W., and Maitland,  M. E., 2000, “The Effect of Hamstring Muscle Compensation for Anterior Laxity in the ACL-Deficient Knee During Gait,” J. Biomech., 33, pp. 871–879.
Huss,  R. A., Holstein,  H., and O’Connor,  J. J., 2000, “A Mathematical Model of Forces in the Knee Under Isometric Quadriceps Contractions,” Clin. Biomech. (Los Angel. Calif.), 15, pp. 112–122.
Li,  G., Gil,  J., Kanamori,  A., and Woo,  S. L.-Y., 1999, “A Validated Three-Dimensional Computational Model of a Human Knee Joint,” J. Biomech. Eng., 121, pp. 657–662.
Wilson,  D. R., Feikes,  J. D., and O’Connor,  J. J., 1998, “Ligaments and Articular Contact Guide Passive Knee Flexion,” J. Biomech., 31, pp. 1127–1136.
Hefzy,  M. S., and Yang,  H., 1993, “A Three-Dimensional Anatomical Model of the Human Patello-Femoral Joint, for the Determination of Patello-Femoral Motions and Contact Characteristics,” J. Biomed. Eng., 15, pp. 289–301.
Blankevoort,  L., and Huiskes,  R., 1996, “Validation of a Three-Dimensional Model of the Knee,” J. Biomech., 29(7), pp. 955–961.
Heegaard,  J., Leyvraz,  P. F., Curnier,  A., Rakotomanana,  L., and Huiskes,  R., 1995, “The Biomechanics of the Human Patella During Passive Knee Flexion,” J. Biomech., 28(11), pp. 1265–1279.
Hirokawa,  S., 1991, “Three-Dimensional Mathematical Model Analysis of the Patellofemoral Joint,” J. Biomech., 24(8), pp. 659–671.
Abdel-Rahman,  E. M., and Hefzy,  M. S., 1998, “Three-Dimensional Dynamic Behavior of the Human Knee Joint under Impact Loading,” Med. Eng. Phys., 20, pp. 276–290.
Tumer,  S. T., and Engin,  A. E., 1993, “Three-Body Segment Dynamic Model of the Human Knee,” J. Biomech. Eng., 115, pp. 350–356.
Ling,  Z.-K., Guo,  H.-Q., and Boersma,  S., 1997, “Analytical Study on the Kinematics and Dynamic Behaviors of a Knee Joint,” Med. Eng. Phys., 19(1), pp. 29–36.
Blankevoort,  L., Kuiper,  J. H., Huiskes,  R., and Grootenboer,  H. J., 1991, “Articular Contact in a Three-Dimensional Model of the Knee,” J. Biomech., 24(11), pp. 1019–1031.
Hefzy,  M. S., Yang,  H., Abdel-Rahman,  E. M., and Alkhazim,  M., 1997, “Effects of Knee Flexion Angle and Quadriceps Contraction on Hamstrings Co-Contraction,” Biomed. Eng. Appl. Basis Commun., BED-36, pp. 145–146.
Hefzy, M. S., and Yang, H., 1998, “Effects of Posterior Cruciate Insufficiency on Tibio-femoral and Patello-Femoral Contact Forces During Isometric Co-Contraction of the Quadriceps and Hamstrings,” Transactions of the 44th Annual Orthopaedic Research Society Meeting, 23 (2), pp. 1034.
McGinty,  G., Irrgang,  J. J., and Pezullo,  D., 2000, “Biomechanical considerations for rehabilitation of the knee,” Clin. Biomech. (Los Angel. Calif.), 15, pp. 160–166.
Grood,  E. S., Suntay,  W. J., Noyes,  F. R., and Butler,  D. L., 1984, “Biomechanics of the Knee Extension Exercise,” J. Bone Jt. Surg., 66A, pp. 725–733.
Grood,  E. S., and Suntay,  W. J., 1983, “A Joint Coordinate System for the Clinical Description of the Three-Dimensional Motions: Applications to the Knee,” J. Biomed. Eng., 105, pp. 136–144.
Mow,  V. C., Athesian,  G. A., and Spilker,  R. L., 1993, “Biomechanics of Diarthrodial Joints: A Review of Twenty Years of Progress,” J. Biomech. Eng., 115, pp. 460–467.
Thambyah,  A., Thiagarajan,  P., and Goh,  J. C. H., 2000, “Biomechanical Study on the Effect of Twisted Human Patellar Tendon,” Clin. Biomech. (Los Angel. Calif.), 15, pp. 756–760.
Brenan, K. E., Campbell, S. L., and Petzold, L. R., 1989, Numerical Solution of Initial-Value Problems in Differential-Algebraic Equations, North-Holland, Elsevier Science Publishing Co., Inc.
Petzold, L. R., 1983, “A Description of DASSL: A Differential/Algebraic System Solver,” In: Stepleman, R. S., Carver, M., Peskin, R., and Vichnevetsky, A., editors, Scientific Computing: Volume 1, IMACS transactions on scientific computation. Amsterdam-New York-Oxford: North Holland Pub. Co., pp. 65–68.
Yasuda,  K., Erickson,  A. R., Johnson,  R. J., and Pope,  M. H., 1992, “Dynamic strain behavior in the medial collateral and anterior cruciate ligaments during lateral impact loading,” Trans. Orthop. Res. Soc., 17, pp. 127.
Shoemaker,  S. C., Adams,  D., Daniel,  D. M., and Woo,  S. L.-Y., 1993, “Quadriceps/Anterior Cruciate Graft Interaction: An in Vitro Study of Joint Kinematics and Anterior Cruciate Ligament Graft Tension,” Clin. Biomech. (Los Angel. Calif.), 294, pp. 379–390.
Biden, E., O’Connor, J., and Goodfellow, J., 1984, “Tibial Rotation in the Cadaver Knee,” Transactions of the 30th Meeting of the Orthopaedic Research Society, pp. 30.
FitzPatrick, D. P., 1989, “Mechanics of the Knee Joint,” D.Phil. Thesis, Univ. of Oxford.
Wilson,  D. R., Feikes,  A. B., Zavatsky,  A. B., and O’Connor,  J. J., 2000, “The Components of Passive Knee Movement are Coupled to Flexion Angle,” J. Biomech., 33, pp. 465–473.
Race,  A., and Amis,  A. A., 1994, “The Mechanical Properties of the Two Bundles of the Human Posterior Cruciate Ligament,” J. Biomech., 27(1), pp. 13–24.
Grood,  E. S., Hefzy,  M. S., and Lindenfield,  T. N., 1989, “Factors Affecting the Region of the Most Isometric Femoral Attachments. Part I: The Posterior Cruciate Ligament,” Am. J. Sports Med., 17(2), pp. 197–207.
Hefzy,  M. S., and Grood,  E. S., 1986, “Sensitivity of Insertion Locations on Length Pattern of Anterior Cruciate Ligament Fibers,” ASME J. Biomech. Eng., 108, pp. 73–82.
Rovick,  J. S., Reuben,  J. D., Schrager,  R. J., and Walker,  P. S., 1991, “Relation between Knee Motion and Ligament Length Patterns,” Clin. Biomech. (Los Angel. Calif.), 6, pp. 213–220.
Wilk,  K. E., Escamilla,  R. F., Fleisig,  G. S., Barrentine,  S. W., Andrews,  J. R., and Boyd,  M. L., 1996, “A Comparison of Tibiofemoral Joint Forces and Electromyographic Activity During Open and Closed Kinetic Chain Exercises,” Am. J. Sports Med., 24(4), pp. 518–527.
Hirokawa,  S., Solomonow,  M., and Lu,  Y., 1992, “Anterior-Posterior and Rotational Displacement of the Tibia Elicited by Quadriceps Contraction,” Am. J. Sports Med., 20, pp. 299–306.
Kaufman,  K. R., An,  K. N., Litchy,  W. J., Morrey,  B. F., and Chao,  E. Y., 1991, “Dynamic Joint Forces During Knee Isokinetic Exercise,” Am. J. Sports Med., 19, pp. 305–316.
Walker,  P. S., and Hajek,  J. V., 1972, “The Load Bearing Area in the Knee Joint,” J. Biomech., 5, pp. 581–589.
Cheng, C. K., 1988, “A Mathematical Model for Predicting Bony Contact Forces and Muscle Forces at the Knee During Human Gait,” Ph.D. Dissertation. Iowa City (IA): The University of Iowa.
Morrison,  J. B., 1970, “The Mechanics of the Knee Joint in Relation to Normal Walking,” J. Biomech., 3, pp. 51–61.
Van Eijden,  T. M., Kouwenhoven,  E., Verbury,  J., and Weijs,  W. A., 1986, “A Mathematical Model of the Patellofemoral Joint,” J. Biomech., 21, pp. 17–22.
Gill,  H. S., and O’Connor,  J. J., 1996, “A Biarticulating 2-Dimensional Model of the Human Patellofemoral Joint,” Clin. Biomech. (Los Angel. Calif.), 11(2), pp. 81–89.
Ahmed,  A. M., Burke,  D. L., and Yu,  A., 1983, “In Vitro Measurement of Static Pressure Distribution in Synovial Joints-Part II: The Retropatellar Surface,” J. Biomech. Eng., 105, pp. 226–236.
Buff,  H., Jones,  L. C., and Hungerford,  D. S., 1988, “Experimental Determination of Forces Transmitted through the Patellofemoral Joint,” J. Biomech., 21, pp. 17–22.
Hille,  E., Schulita,  K. P., Henrichs,  C., and Schneider,  T., 1985, “Pressure and Contact-Surface Measurements within the Femoro-Patellar Joint and their Variations Following Lateral Release,” Arch. Orthop. Trauma Surg., 104, pp. 275–282.
Hefzy,  M. S., Jackson,  W. T., Saddemi,  S. R., and Hsieh,  Y. F., 1992, “Effects of Tibial Rotations on Patellar Tracking and Patello-Femoral Contact Areas,” J. Biomed. Eng., 14, pp. 329–343.
Hehne,  H. J., 1990, “Biomechanics of the Patellofemoral Joint and Its Clinical Relevance,” Clin. Orthop. Relat. Res., 258, pp. 73–85.
Cohen,  Z. A., Roglic,  H., Grelsamer,  R. P., Henry,  J. H., Levine,  W. N., Mow,  V. C., and Ateshian,  G. A., 2001, “Patellofemoral Stresses During Open and Closed Kinetic Chain Exercises,” Am. J. Sports Med., 29(4), pp. 480–487.
Takeuchi,  R., Koshino,  T., Saito,  T., Suzuki,  E., and Sakai,  N., 1999, “Patello-Femoral Contact Area and Compressive Force after Anteromedial Displacement of Tibial Tuberosity in Amputated Knees,” The Knee, 6, pp. 109–114.
Moeinzadeh, M. H., Engin, 1988, “Dynamic Modeling of the Human Knee Joint,” In: Computational Methods in Bioengineering, Proceedings of the 1988 WAM. Chicago (IL): ASME; BED-Vol. 9 , pp. 145–156.

Figures

Grahic Jump Location
Duration of knee extension exercise for different quadriceps forcing functions
Grahic Jump Location
Internal-external tibial rotations and varus-valgus rotations versus knee flexion angle for different quadriceps forcing functions
Grahic Jump Location
Patellar flexion angle versus knee flexion angle for different quadriceps forcing functions
Grahic Jump Location
Medial and lateral components of the tibio-femoral contact force versus knee flexion angle for different quadriceps forcing functions
Grahic Jump Location
Lateral and medial components of the patello-femoral contact force versus knee flexion angle for different quadriceps forcing functions
Grahic Jump Location
Forces in the anterior and posterior fibers of the ACL versus knee flexion angle for different quadriceps forcing functions
Grahic Jump Location
Forces in the anterior and posterior fibers of the PCL versus knee flexion angle for different quadriceps forcing functions
Grahic Jump Location
Ratio of total patello-femoral contact force to quadriceps force versus knee flexion angle: comparison between model predictions and published experimental data and other quasi-static models’ predictions
Grahic Jump Location
Forcing functions applied to the quadriceps tendon to simulate knee extension exercise.
Grahic Jump Location
Initial and final positions during knee extension exercise simulation
Grahic Jump Location
3-D model of the knee joint (tibio-femoral and patello-femoral joints) showing the collateral and cruciate ligaments
Grahic Jump Location
Tibio-femoral and patello-femoral joint coordinate systems.

Tables

Errata

Discussions

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related Journal Articles
Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In