0
TECHNICAL PAPERS

Modal Damping for Monitoring Bone Integrity and Osteoporosis

[+] Author and Article Information
Sofia D. Panteliou, Agathi L. Xirafaki

Department of Mechanical Engineering and Aeronautics, University of Patras, GR-26500, Patras, Greece

Elias Panagiotopoulos, John N. Varakis

Medical School, University of Patras, GR-26500, Patras, Greece

Nikos V. Vagenas, Christos G. Kontoyannis

Department of Pharmacy, University of Patras, GR-26500, Patras, GreeceICE/HT-FORTH, Stadiou Str, Platani Achaias, Greece

J Biomech Eng 126(1), 1-5 (Mar 09, 2004) (5 pages) doi:10.1115/1.1644561 History: Received May 04, 2002; Revised August 20, 2003; Online March 09, 2004
Copyright © 2004 by ASME
Your Session has timed out. Please sign back in to continue.

References

Martin, T. J., and Dempster, D. W., 1998, “Osteoporosis,” J. Stevenson and R. Lindsay, Eds., Chapman-Hall, New York.
Penel,  G., Leroy,  G., and Bres,  E., 1998, “New Preparation Method of Bone Samples for Raman Microspectrometry,” Appl. Spectrosc., 52, pp. 312–3.
Penel,  G., Leroy,  G., Rey,  C., and Bres,  E., 1998, “MicroRaman Spectral Study of the PO4 and CO3 Vibrational Modes in Synthetic and Biological Apatites,” Calcif. Tissue Int., 63, pp. 475–81.
Rehman,  I., Smith,  R., Hench,  L., and Bonfield,  W., 1995, “Structural Evaluation of Human and Sheep Bone and Comparison With Synthetic Hydroxyapatite by FT-Raman Spectroscopy,” J. Biomed. Mater. Res., 29, pp. 1287–94.
Walters,  W. A., Leung,  Y. C., Blumenthal,  N. C., LeGeros,  R. Z., and Konsker,  K. A., 1990, “A Raman and Infrared Spectroscopic Investigation of Biological Hydroxyapatite,” J. Inorg. Biochem., 39, pp. 193–200.
Sauer,  G. R., Zunic,  W. B., Durig,  J. R., and Wuthier,  R. E., 1994, “Fourier Transform Raman Spectroscopy of Synthetic and Biological Calcium Phosphates,” Calcif. Tissue Int., 54, pp. 414–20.
Timlin,  J. A., Carden,  A., and Morris,  M. D., 1999, “Chemical Microstructure of Cortical Bone Probed by Raman Transects,” Appl. Spectrosc., 53, pp. 1429–1435.
Kontoyannis,  C. G., and Vagenas,  N. V., 2000, “FT-Raman Spectroscopy: a Tool for Monitoring the Demineralization of Bones,” Appl. Spectrosc., 54, pp. 1605–09.
Cumings,  S. R., Black,  D. M., Nevitt,  M. C., Browner,  W., Cauley,  J. A., Genant,  H. K., Mascioli,  S. R., Scott,  J. C., Seeley,  D. G., Steiger,  P., and Vogt,  T. M., 1990, “Appendicular Bone Density and Age Predict Hip Fracture in Women,” JAMA, J. Am. Med. Assoc., 263, pp. 665–668.
Cumings,  S. R., Black,  D. M., Nevitt,  M. C., Browner,  W., Cauley,  J. A., Ensrud,  K., Genant,  H. K., Palermo,  L., Scott,  J., and Vogt,  T. M., 1993, “Bone Density at Various Sites for Prediction of Hip Fractures,” Lancet, 341, pp. 72–75.
Cumings,  S. R., Nevitt,  M. C., Browner,  W. S., Stone,  K., Fox,  K. M., Ensrud,  K. E., Cauley,  J., Black,  D., and Vogt,  T. M., 1995, “Risk Factors for Hip Fracture in White Women. Study of Osteoporotic Fractures Research Group,” N. Engl. J. Med., 332, pp. 767–773.
Parfitt,  A. M., 1987, “Trabecular Bone Architecture in the Pathogenesis and Prevention of Fracture,” Am. J. Med., 82(S1B), pp. 68–72.
Kleerekoper,  M., Villanueva,  A. R., Stanciu,  J., Sudhaker,  Rao D., and Parfitt,  A. M., 1985, “The Role of Three-Dimensional Trabecular Microstructure in the Pathogenesis of Vertebral Compression Fractures,” Calcif. Tissue Int., 37, pp. 594–597.
Petersen, K., 1977, “Noninvasive Determination of Bone Stiffness,” Dissertation, Stanford University.
Steele, C. R., 1984, “Instruments for Assessment of Bone Properties,” Workshop on Advances in NASA-Relevant Minimally Invasive Instrumentation, Apr. 25–27, Asilomar, Ca.
Steele,  C. R., Zhou,  L. J., and Guido,  D., 1988, “Noninvasive Determination of Ulnar Stiffness From Mechanical Response—In Vivo Comparison of Stiffness and Bone Mineral Content in Humans,” J. Biomech. Eng., 110, pp. 87–96.
Campbell,  J. N., and Jurist,  J. M., 1971, “Mechanical Impedance of the Femur: A Preliminary Report,” J. Biomech., 4, pp. 319–322.
Markey,  E. L., and Jurist,  J. M., 1974, “Tibial Resonant Frequency Measurement as an Index of the Strength of Fracture Union,” Wis. Med. J., 73, pp. 62–65.
Lewis,  J. L., 1975, “A Dynamic Model for a Healing Fractured Long Bone,” J. Biomech., 8, pp. 17–25.
Doemland, H. H., and Stanley, B., 1979, “A Method Monitoring the Healing of Human Long Bones,” IEEE/Eng. in Med. and Biol. First Conf.
Hiriyama,  T., and Sekiguchi,  T., 1979, “Assessment of Fracture Healing by Vibration,” Acta Orthop. Scand., 50, pp. 391–398.
Heaney,  R. P., Avioli,  L. V., Chesnut,  C. H., Lappe,  J., Recker,  R. R., and Brandenburger,  G. H., 1989, “Osteoporotic Bone Fragility. Detection by Ultrasound Transmission Velocity,” JAMA, J. Am. Med. Assoc., 262, pp. 2986–2990.
Panteliou,  S., Abbasi-Jahromi,  H., Dimarogonas,  A. D., Kohrt,  W., and Civitelli,  R., 1999, “Low-Frequency Acoustic Sweep of Bone Integrity and Osteoporosis,” J. Biomech. Eng., 121, pp. 423–431.
Panteliou,  S. D., and Dimarogonas,  A. D., 1997, “Thermodynamic Damping in Porous Materials With Ellipsoidal Cavities,” J. Sound Vib., 201(5), pp. 555–565.
Panteliou,  S. D., and Dimarogonas,  A. D., 1977, “Thermodynamic Damping in Porous Materials With Spherical Cavities,” Journal of Shock and Vibration,4, No. 4, pp. 261–268.
Dimarogonas, A. D., 1996, “Vibration for Engineers,” Englewood Cliffs, N.J.: Prentice-Hall 2nd edition.
Lazan, B. J., 1968, “Damping of Materials and Members in Structural Mechanics,” Oxford: Pergamon Press.
Lewis,  F. M., 1932, “Vibration During Acceleration Through the Critical Speed,” Trans. ASME, 54, pp. 253–257.
Baker,  L. G., 1939, “Mathematical-Machine Determination of the Vibration of Accelerated Unbalanced Rotor,” J. Appl. Mech., A6, pp. 145–150.
G.,  Henning, Schmitdt,  B., and Wedlich,  Th., 1967, “Erzwungene Schwingungen Beim Resonanzdurchgang,” VDI-Bericht, 113, pp. 41–46.
Galante,  J., Rostoker,  W., and Ray,  R. D., 1970, “Physical Properties of Trabecular Bone,” Calcified Tissue Research, 5, 236–246, Springer Verlag.

Figures

Grahic Jump Location
Response of a single-degree-of-freedom to sweep excitation F(t)=F0 cos(ω1+at)t, a=0.00707 rad/s2
Grahic Jump Location
Response of a single-degree-of-freedom to sweep excitation F(t)=F0 cos(ω1+at)t, a=0.00141 rad/s2
Grahic Jump Location
FT-Raman spectra excited from part of a sheep femur sample: A. Before the artificial de-mineralization B. After its immersion for 1 hour in 2 M HCl solution.
Grahic Jump Location
Change (%) of mechanical properties as function of hours of exposure in acid, for sheep femoral heads treated with 2×Normal HCl solution
Grahic Jump Location
Measurements of Modal Damping Factor correlated with Bone Mineral Density
Grahic Jump Location
Measurements of Quality Factor correlated with Bone Mineral Density

Tables

Errata

Discussions

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related Journal Articles
Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In