Development and Validation of a 3-D Model to Predict Knee Joint Loading During Dynamic Movement

[+] Author and Article Information
S. G. McLean, A. Su, A. J. van den Bogert

Department of Biomedical Engineering, The Cleveland Clinic Foundation, Cleveland, OH

J Biomech Eng 125(6), 864-874 (Jan 09, 2004) (11 pages) doi:10.1115/1.1634282 History: Revised June 20, 2003; Received November 16, 2003; Online January 09, 2004
Copyright © 2003 by ASME
Your Session has timed out. Please sign back in to continue.


Daniel, D. M., and Fritschy, D., 1994, Anterior Cruciate Ligament Injuries, Philadelphia, W.B. Saunders.
Frank,  C. B., and Jackson,  D. W., 1997, “The Science of Reconstruction of the Anterior Cruciate Ligament,” J. Bone Jt. Surg., Am. Vol., 79(10), pp. 1556–1576.
Griffin,  L. Y., Agel,  J., Albohm,  M. J., Arendt,  E. A., Dick,  R. W., Garrett,  W. E., Garrick,  J. G., Hewett,  T. E., Huston,  L., Ireland,  M. L., Johnson,  R. J., Kibler,  W. B., Lephart,  S., Lewis,  J. L., Lindenfeld,  T. N., Mandelbaum,  B. R., Marchak,  P., Teitz,  C. C., and Wojtys,  E. M., 2000, “Noncontact Anterior Cruciate Ligament Injuries: Risk Factors and Prevention Strategies,” J. Am. Acad. Orthop. Surg., 8(3), pp. 141–150.
Gilquist,  J., and Messner,  K., 1999, “Anterior Cruciate Ligament Reconstruction and the Long-Term Incidence of Gonarthrosis,” Sports Med., 27(3), pp. 143–156.
Sutton,  A. J., Muir,  K. R., Mockett,  S., and Fentem,  P., 2001, “A Case-Control Study to Investigate the Relation Between Low and Moderate Levels of Physical Activity and Osteoarthritis of the Knee Using Data Collected as Part of the Allied Dunbar National Fitness Survey,” Ann. Rheum. Dis., 60, pp. 756–764.
Boden,  B. P., Dean,  G. S., Feagin,  J. A., and Garrett,  W. E., 2000, “Mechanisms of Anterior Cruciate Ligament Injury,” Orthopedics, 23(6), pp. 573–578.
Feagin,  J. A., and Lambert,  K. L., 1985, “Mechanism of Injury and Pathology of Anterior Cruciate Ligament Injuries,” Orthop. Clin. North Am., 16(1), pp. 41–45.
Kirkendall,  D. T., and Garrett,  W. E., 2000, “The Anterior Cruciate Ligament Enigma. Injury Mechanisms and Prevention,” Clin. Orthop., (372), pp. 64–68.
Cross,  M. J., Gibbs,  N. J., and Bryant,  G. J., 1989, “An Analysis of the Sidestep Cutting Manoeuvre,” Am. J. Sports Med., 17(3), pp. 363–366.
Colby,  S., Francisco,  A., Yu,  B., Kirkendall,  D., Finch,  M., and Garrett,  W., 2000, “Electromyographic and Kinematic Analysis of Cutting Maneuvers. Implications for Anterior Cruciate Ligament Injury,” Am. J. Sports Med., 28(2), pp. 234–240.
McNair,  P. J., Marshall,  R. N., and Matheson,  J. A., 1990, “Important Features Associated With Acute Anterior Cruciate Ligament Injury,” N. Z. Med. J., 103(901), pp. 537–539.
McLean,  S. G., Myers,  P. T., Neal,  R. J., and Walters,  M. R., 1998, “A Quantitative Analysis of Knee Joint Kinematics During the Sidestep Cutting Maneuver. Implications for Non-Contact Anterior Cruciate Ligament Injury,” Bull. Hosp. Jt. Dis., 57(1), pp. 30–38.
Butler,  D. L., Guan,  Y., Kay,  M. D., Cummings,  J. F., Feder,  S. M., and Levy,  M. S., 1992, “Location-Dependent Variations in the Material Properties of the Anterior Cruciate Ligament,” J. Biomech., 25(5), pp. 511–518.
Kanamori,  A., Woo,  S. L., Ma,  C. B., Zeminski,  J., Rudy,  T. W., Li,  G., and Livesay,  G. A., 2000, “The Forces in the Anterior Cruciate Ligament and Knee Kinematics During a Simulated Pivot Shift Test: A Human Cadaveric Study Using Robotic Technology,” Arthroscopy, 16(6), pp. 633–639.
Markolf,  K. L., Burchfield,  D. M., Shapiro,  M. M., Shepard,  M. F., Finerman,  G. A., and Slauterbeck,  J. L., 1995, “Combined Knee Loading States That Generate High Anterior Cruciate Ligament Forces,” J. Orthop. Res., 13(6), pp. 930–935.
Arendt,  E., and Dick,  R., 1995, “Knee Injury Patterns Among Men and Women in Collegiate Basketball and Soccer. NCAA Data and Review of Literature,” Am. J. Sports Med., 23(6), pp. 694–701.
McLean,  S. G., Neal,  R. J., Myers,  P. T., and Walters,  M. R., 1999, “Knee Joint Kinematics During the Sidestep Cutting Maneuver: Potential for Injury in Women,” Med. Sci. Sports Exercise, 31(7), pp. 959–968.
Neptune,  R. R., Wright,  I. C., and van den Bogert,  A. J., 1999, “Muscle Coordination and Function During Cutting Movements,” Med. Sci. Sports Exercise, 31(2), pp. 294–302.
Simonsen,  E. B., Magnusson,  S. P., Bencke,  J., Naesborg,  H., Havkrog,  M., Ebstrup,  J. F., and Sorensen,  H., 2000, “Can the Hamstring Muscles Protect the Anterior Cruciate Ligament During a Side-Cutting Maneuver?,” Scand. J. Med. Sci. Sports, 10(2), pp. 78–84.
Yu,  B., Kirkendall,  D. T., Taft,  T. N., and Garrett,  W. E., 2002, “Lower Extremity Motor Control-Related and Other Risk Factors for Noncontact Anterior Cruciate Ligament Injuries,” Instr Course Lect, 51, pp. 315–324.
Besier,  T. F., Lloyd,  D. G., Ackland,  T. R., and Cochrane,  J. L., 2001, “Anticipatory Effects on Knee Joint Loading During Running and Cutting Maneuvers,” Med. Sci. Sports Exercise, 33(7), pp. 1176–1181.
Besier,  T. F., Lloyd,  D. G., and Ackland,  T. R., 2003, “Muscle Activation Strategies at the Knee During Running and Cutting Maneuvers,” Med. Sci. Sports Exercise, 35(1), pp. 119–127.
King,  A. I., 1993, “Progress of Research on Impact Biomechanics,” J. Biomech. Eng., 115(4B), pp. 582–587.
Neptune,  R. R., Wright,  I. C., and van den Bogert,  A. J., 2000, “A Method for Numerical Simulation of Single Limb Ground Contact Events: Application to Heel-Toe Running,” Comput. Methods Biomech. Biomed. Eng.,3(4), pp. 321–334.
Neptune,  R. R., Wright,  I. C., and van den Bogert,  A. J., 2000, “The Influence of Orthotic Devices and Vastus Medialis Strength and Timing on Patellofemoral Loads During Running,” Clin. Biomech. (Los Angel. Calif.), 15(8), pp. 611–618.
Wright,  I. C., Neptune,  R. R., van den Bogert,  A. J., and Nigg,  B. M., 2000, “The Influence of Foot Positioning on Ankle Sprains,” J. Biomech., 33(5), pp. 513–519.
Squires, G. L., 1968, “Practical Physics,” McGraw Hill, London.
Lu,  T. W., and O’Connor,  J. J., 1999, “Bone Position Estimation From Skin Marker Co-Ordinates Using Global Optimization With Joint Constraints,” J. Biomech., 32(2), pp. 129–134.
Yeadon,  M. R., 1990, “The Simulation of Aerial Movement—I. The Determination of Orientation Angles From Film Data,” J. Biomech., 23(1), pp. 59–66.
Bell,  A. L., Pedersen,  D. R., and Brand,  R. A., 1990, “A Comparison of the Accuracy of Several Hip Center Location Prediction Methods,” J. Biomech., 23(6), pp. 617–621.
Vaughan, C. L., Davis, B. L., and O’Connor, J. C., 1992, “Dynamics of Human Gait,” Human Kinetics Publishers, Champaign, IL, p. 26.
Isman,  R. E., and Inman,  V. T., 1969, “Anthropometric Studies of the Human Foot an Ankle,” Bull. Prosthet. Res., 11, pp. 97–129.
van den Bogert,  A. J., Smith,  G. D., and Nigg,  B. M., 1994, “In Vivo Determination of the Anatomical Axes of the Ankle Joint Complex: An Optimization Approach,” J. Biomech., 27(12), pp. 1477–1488.
de Leva,  P., 1996, “Adjustments to Zatsiorsky-Seluyanov’s Segment Inertia Parameters,” J. Biomech., 29(9), pp. 1223–1230.
Wakeling,  J. M., and Nigg,  B. M., 2001, “Soft-Tissue Vibrations in the Quadriceps Measured With Skin Mounted Transducers,” J. Biomech., 34(4), pp. 539–543.
Arnold,  A. S., Salinas,  S., Asakawa,  D. J., and Delp,  S. L., 2000, “Accuracy of Muscle Moment Arms Estimated From MRI-Based Musculoskeletal Models of the Lower Extremity,” Comput. Aided Surg., 5(2), pp. 108–119.
Arnold,  A. S., and Delp,  S. L., 2001, “Rotational Moment Arms of the Medial Hamstrings and Adductors Vary With Femoral Geometry and Limb Position: Implications for the Treatment of Internally Rotated Gait,” J. Biomech., 34(4), pp. 437–447.
Herzog,  W., and Read,  L. J., 1993, “Lines of Action and Moment Arms of the Major Force-Carrying Structures Crossing the Human Knee Joint,” J. Am. Aud Soc., 182(Pt 2), pp. 213–230.
Kellis,  E., and Baltzopoulos,  V., 1999, “In Vivo Determination of the Patella Tendon and Hamstrings Moment Arms in Adult Males Using Videofluoroscopy During Submaximal Knee Extension and Flexion,” Clin. Biomech. (Los Angel. Calif.), 14(2), pp. 118–124.
Klein,  P., Mattys,  S., and Rooze,  M., 1996, “Moment Arm Length Variations of Selected Muscles Acting on Talocrural and Subtalar Joints During Movement: An in Vitro Study,” J. Biomech., 29(1), pp. 21–30.
Lu,  T. W., and O’Connor,  J. J., 1996, “Lines of Action and Moment Arms of the Major Force-Bearing Structures Crossing the Human Knee Joint: Comparison Between Theory and Experiment,” J. Anat., 189(3), pp. 575–585.
Nemeth,  G., and Ohlsen,  H., 1985, “In Vivo Moment Arm Lengths for Hip Extensor Muscles at Different Angles of Hip Flexion,” J. Biomech., 18(2), pp. 129–140.
Nemeth,  G., and Ohlsen,  H., 1989, “Moment Arms of Hip Abductor and Adductor Muscles Measured in Vivo by Computed Tomography,” Clin. Biomech. (Los Angel. Calif.), 4, pp. 133–136.
Spoor,  C. W., van Leeuwen,  J. L., Meskers,  C. G., Titulaer,  A. F., and Huson,  A., 1990, “Estimation of Instantaneous Moment Arms of Lower-Leg Muscles,” J. Biomech., 23(12), pp. 1247–1259.
van Soest,  A. J., and Bobbert,  M. F., 1993, “The Contribution of Muscle Properties in the Control of Explosive Movements,” Biol. Cybern., 69(3), pp. 195–204.
Delp,  S. L., Loan,  J. P., Hoy,  M. G., Zajac,  F. E., Topp,  E. L., and Rosen,  J. M., 1990, “An Interactive Graphics-Based Model of the Lower Extremity to Study Orthopaedic Surgical Procedures,” IEEE Trans. Biomed. Eng., 37(8), pp. 757–767.
Walker,  S. M., and Schrodt,  G. R., 1973, “Segment Lengths and Thin Filament Periods in Skeletal Muscle Fibres of the Rhesus Monkey and the Human,” Anat. Rec., 178, pp. 63–82.
Gerritsen,  K. G., van den Bogert,  A. J., Hulliger,  M., and Zernicke,  R. F., 1998, “Intrinsic Muscle Properties Facilitate Locomotor Control—a Computer Simulation Study,” Motor Control, 2(3), pp. 206–220.
Visser,  J. J., Hoogkamer,  J. E., Bobbert,  M. F., and Huijing,  P. A., 1990, “Length and Moment Arm of Human Leg Muscles as a Function of Knee and Hip-Joint Angles,” Physiol. Occup. Physiol. , 61(5–6), pp. 453–460.
Kulig,  K., Andrews,  J. G., and Hay,  J. G., 1984, “Human Strength Curves,” Exerc Sport Sci. Rev., 12, pp. 417–466.
Sale,  D., Quinlan,  J., Marsh,  E., McComas,  A. J., and Belanger,  A. Y., 1982, “Influence of Joint Position on Ankle Plantarflexion in Humans,” J. Appl. Physiol., 52(6), pp. 1636–1642.
Marsh,  E., Sale,  D., McComas,  A. J., and Quinlan,  J., 1981, “Influence of Joint Position on Ankle Dorsiflexion in Humans,” J. Appl. Physiol., 51(1), pp. 160–167.
He,  J., Levine,  W. S., and Loeb,  G. E., 1991, “Feedback Gains for Correcting Small Perturbations to Standing Posture,” IEEE Trans. Autom. Control, 36, pp. 322–332.
Winters,  J. M., and Stark,  L., 1987, “Muscle Models: What is Gained and What is Lost by Varying Model Complexity,” Biol. Cybern., 55(6), pp. 403–420.
Aerts,  P., and De Clercq,  D., 1993, “Deformation Characteristics of the Heel Region of the Shod Foot During a Simulated Heel Strike: The Effect of Varying Midsole Hardness,” J. Sports Sci., 11(5), pp. 449–461.
Goffe,  W. L., Ferrier,  G. D., and Rogers,  J., 1994, “Global Optimization of Statistical Functions With Simulated Annealing,” J. Econometrics,60, pp. 65–99.
McLean, S. G., 2001, “Quantification of in vivo Anterior Cruciate Ligament Elongation During Sidestep Cutting and Running—Implications for Non-Contact Ligament Injury,” Unpublished doctoral thesis.
Reinschmidt,  C., van den Bogert,  A. J., Nigg,  B. M., Lundberg,  A., and Murphy,  N., 1997, “Effect of Skin Movement on the Analysis of Skeletal Knee Joint Motion During Running,” J. Biomech., 30(7), pp. 729–732.
Spoor,  C. W., and van Leeuwen,  J. L., 1992, “Knee Muscle Moment Arms From MRI and From Tendon Travel,” J. Biomech., 25(2), pp. 201–206.
Pandy,  M. G., and Shelburne,  K. B., 1997, “Dependence of Cruciate-Ligament Loading on Muscle Forces and External Load,” J. Biomech., 30(10), pp. 1015–1024.
Shelburne,  K. B., and Pandy,  M. G., 1997, “A Musculoskeletal Model of the Knee for Evaluating Ligament Forces During Isometric Contractions,” J. Biomech., 30(2), pp. 163–176.
Gerritsen,  K. G., Nachbauer,  W., and van den Bogert,  A. J., 1996, “Computer Simulation of Landing Movement in Downhill Skiing: Anterior Cruciate Ligament Injuries,” J. Biomech., 29(7), pp. 845–854.
Woo,  S. L., Hollis,  J. M., Adams,  D. J., Lyon,  R. M., and Takai,  S., 1991, “Tensile Properties of the Human Femur-Anterior Cruciate Ligament-Tibia Complex. The Effects of Specimen Age and Orientation,” Am. J. Sports Med., 19(3), pp. 217–225.
Besier,  T. F., Lloyd,  D. G., Cochrane,  J. L., and Ackland,  T. R., 2001, “External Loading of the Knee Joint During Running and Cutting Maneuvers,” Med. Sci. Sports Exercise, 33(7), pp. 1168–1175.
Piziali,  R. L., Rastegar,  J., Nagel,  D. A., and Schurman,  D. J., 1980, “The Contribution of the Cruciate Ligaments to the Load-Displacement Characteristics of the Human Knee Joint,” J. Biomech. Eng., 102(4), pp. 277–283.
Edman,  K. A. P., 1979, “The Velocity of Unloaded Shortening and its Relation to Sarcomere Length and Isometric Force in Vertebrate Muscle Fibers,” J. Physiol. (London), 291, pp. 143–159.
Petrofsky,  J. S., and Phillips,  C. A., 1981, “The Influence of Temperature Initial Length and Electrical Activity on the Force-Velocity Relationship of the Medial Gastrocnemius Muscle of the Cat,” J. Biomech., 14, pp. 297–306.
Hill,  A. V., 1938, “The Heat of Shortening and the Dynamic Constants of Muscle,” Proc. Royal Soc.,126B, pp. 136–195.
Herzog W., 1999, “Muscle. In: Biomechanics of the Musculoskeletal System,” 2nd Edition, edited by Nigg, B. M., and Herzog, W., Wiley, New York, pp. 148–188.
Chow,  J. W., and Darling,  W. G., 1999, “The Maximum Shortening Velocity of Muscle Should be Scaled With Activation,” J. Appl. Physiol., 86, pp. 1025–1031.
Katz,  B., 1939, “The Relation Between Force and Speed in Muscular Contraction,” J. Physiol. (London), 96, pp. 45–64.
Magnusson,  S. P., Aagaard,  P., Dyhre-Poulsen,  P., and Kjaer,  M., 2001, “Load-Displacement Properties of the Human Triceps Surae Aponeurosis in Vivo,” J. Physiol. (London), 531, pp. 277–288.


Grahic Jump Location
Marker placements used during the collection of high speed video data. Standing (neutral) maker data (A) were used to construct a kinematic model of the trunk and lower limb. These data along with those recorded during sidestepping trials (B) were processed via Mocap Solver software to solve for the 12 degrees of freedom.
Grahic Jump Location
Three-component Hill model for muscle force production: contractile element (CE), parallel elastic element (PEE), and series elastic element (SEE). The corresponding relationships between lengths and forces are shown.
Grahic Jump Location
Measured variables incorporated within the model optimization, comprising three ground reaction forces (V1−V3), three body rotations (V4−V6) and six joint rotations (V7−V12).
Grahic Jump Location
Comparisons between measured and simulated sidestep data for the first 200 ms of stance for key movement (hip flexion-extension, knee flexion-extension and ankle inversion-eversion) and GRF (vertical force) variables.
Grahic Jump Location
Optimized muscle activations for the 11 functional muscle groups used in the simulation of the sidestep cutting maneuver. Activation patterns for each group were modeled as a 5 parameter piecewise linear functions of time. Quadriceps activations represented those applied to the vastus lateralis, medialis and intermedius muscles. Hamstring activation patterns were applied to the hamstring and biceps femoris (short and long head) muscles. Plantar flexor activations were applied to the gastrocnemius and soleus muscles. Comparisons are also made between these and similar data reported previously for sidestepping maneuvers 18.
Grahic Jump Location
Comparisons between model RMS prediction errors and measured between-trial variability over 200 ms, for key movement (A. hip flexion-extension, B. knee flexion-extension and C. ankle inversion-eversion) and GRF (D. vertical force) variables
Grahic Jump Location
External 3D knee joint reaction forces calculated for the optimized sidestep simulation. Peak anterior force (A), valgus (B) and internal rotation torque (C) values of 34.6 N, 19.15 Nm and 19.24 Nm respectively, were observed over the first 200 ms of stance
Grahic Jump Location
Monte Carlo simulations (n=100000), representing realistic variations in neuromuscular control at impact, produced large increases in anterior knee joint reaction force, and valgus and internal rotation torques over the first 200 ms of stance during simulated sidestepping trials




Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related Journal Articles
Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In