0
TECHNICAL PAPERS

Computational Fluid Dynamics Simulations in Realistic 3-D Geometries of the Total Cavopulmonary Anastomosis: The Influence of the Inferior Caval Anastomosis

[+] Author and Article Information
Francesco Migliavacca, Gabriele Dubini

Laboratory of Biological Structure Mechanics, Dept. of Bioengineering and Dept. of Structural Engineering, Politecnico di Milano, Milano, Italy

Edward L. Bove

Section of Cardiac Surgery, The University of Michigan School of Medicine, Ann Arbor, MI, USA

Marc R. de Leval

Cardiothoracic Unit, Great Ormond Street Hospital for Children, London, UK

J Biomech Eng 125(6), 805-813 (Jan 09, 2004) (9 pages) doi:10.1115/1.1632523 History: Received June 17, 2002; Revised August 01, 2003; Online January 09, 2004
Copyright © 2003 by ASME
Your Session has timed out. Please sign back in to continue.

References

Fontan,  F., and Baudet,  E., 1971, “Surgical Repair of Tricuspid Atresia,” Thorax, 26, pp. 240–248.
de Leval,  M. R., Kilner,  P., Gewillig,  M., and Bull,  C., 1988, “Total Cavopulmonary Connection: a Logical Alternative to Atriopulmonary Connection for Complex Fontan Operations,” J. Thorac. Cardiovasc. Surg., 96, pp. 682–695.
Humes,  R. A., Feldt,  R. H., Porter,  C. J., Julsrud,  P. R., Puga,  F. J., and Danielson,  G. K., 1988, “The Modified Fontan Operation for Asplenia and Polysplenia Syndromes,” J. Thorac. Cardiovasc. Surg., 96, pp. 212–218.
Marcelletti,  C., Corno,  A., Giannico,  S., and Marino,  B., 1990, “Inferior Vena Cava-Pulmonary Artery Extracardiac Conduit: a New Form of Right Heart Bypass,” J. Thorac. Cardiovasc. Surg., 100, pp. 228–232.
Bridges,  N. D., Jonas,  R. A., Mayer,  J. E., Flanagan,  M. F., Keane,  J. F., and Castaneda,  A. R., 1990, “Bidirectional Cavopulmonary Anastomosis as Interim Palliation for High-Risk Fontan Candidates. Early Results,” Circulation, 82, pp. 170–176.
Hopkins,  R. A., Armstrong,  B. E., Serwer,  G. A., Peterson,  R. J., and Oldham,  H. N., 1985, “Physiological Rationale for Bidirectional Cavopulmonarty Shunt. A Versatile Complement to the Fontan Principle,” J. Thorac. Cardiovasc. Surg., 90, pp. 391–398.
Douglas,  W. I., Goldberg,  C. S., Mosca,  R. S., Law,  I. H., and Bove,  E. L., 1999, “The Hemi-Fontan Procedure for Hypoplastic Left Heart Syndrome: Intermediate Outcome and Suitability for Fontan,” Ann. Thorac. Cardiovasc. Surg., 68, pp. 1361–1368.
Gerdes,  A., Kunze,  J., Pfister,  G., and Sievers,  H. H., 1999, “Addition of a Small Curvature Reduces Power Losses Across Total Cavopulmonary Connections,” Ann. Thorac. Cardiovasc. Surg., 67, pp. 1760–1764.
Low,  H. T., Chew,  Y. T., and Lee,  C. N., 1993, “Flow Studies on Atriopulmonary and Cavopulmonary Connections of the Fontan Operations for Congenital Heart Defects,” J. Biomech. Eng., 15, pp. 303–307.
Kim,  Y. H., Walker,  P. G., Fontaine,  A. A., Panchal,  S., Ensley,  A. E., Oshinski,  J., Sharma,  S., Ha,  B., Lucas,  C. L., and Yoganathan,  A. P., 1995, “Hemodynamics of the Fontan Connection: an In Vitro Study,” J. Biomech. Eng., 117, pp. 423–428.
Sharma,  S., Goudy,  S., Walker,  P., Panchal,  S., Ensley,  A., Kanter,  K., Tam,  V., Fyfe,  D., and Yoganathan,  A., 1996, “In Vitro Flow Experiments for Determination of Optimal Geometry of Total Cavopulmonary Connection for Surgical Repair of Children With Functional Single Ventricle,” J. Am. Coll. Cardiol., 27, pp. 1264–1269.
Sharma,  S., Ensley,  A., Chatzimavroudis,  G. P., Fontaine,  A. A., and Yoganathan,  A. P., 1997, “Does the Addition of Curvature at the Total Cavopulmonary Connection (TCPC) Site Reduce Power Losses?” J. Am. Coll. Cardiol., 29, pp. 1043–1059.
Kim,  S. H., Park,  Y. H., and Cho,  B. K., 1997, “Hemodynamics of the Total Cavopulmonary Connection: an In Vitro Study,” Yonsei Med. J. 38, pp. 33–39.
Ensley,  A. E., Lynch,  P., Chatzimavroudis,  G. P., Lucas,  C., Sharma,  S., and Yoganathan,  A. P., 1999, “Toward Designing the Optimal Total Cavopulmonary Connection: an In Vitro Study,” Ann. Thorac. Cardiovasc. Surg., 68, pp. 1384–1390.
Lardo,  A. C., Webber,  S. A., Friehs,  I., del Nido,  P. J., and Cape,  E. G., 1999, “Fluid Dynamic Comparison of Intra-Atrial and Extracardiac Total Cavopulmonary Connections,” J. Thorac. Cardiovasc. Surg., 117, pp. 697–704.
Walker,  P. G., Howe,  T. T., Davies,  R. L., Fisher,  J., and Watterson,  K. G., 2002, “Distribution of Hepatic Venous Blood in the Total Cavo-Pulmonary Connection: an In Vitro Study,” Eur. J. Cardiothorac Surg., 17, pp. 658–665.
Grigioni,  M., Amodeo,  A., Daniele,  C., D’Avenio,  G., Formigari,  R., and Di Donato,  R. M., 2002, “Particle Image Velocimetry Analysis of the Flow Field in the Total Cavopulmonary Connection,” Artif. Organs, 24, pp. 946–952.
DeGroff,  C. G., Carlton,  J. D., Weinberg,  C. E., Ellison,  M. C., Shandas,  R., and Valdes-Cruz,  L., 2002, “Effect of Vessel Size on the Flow Efficiency of the Total Cavopulmonary Connection: In Vitro Studies,” Pediatr. Cardiol., 23, pp. 171–177.
Van Haesdonck,  J. M., Mertens,  L., Sizaire,  R., Montas,  G., Purnode,  B., Daenen,  W., Crochet,  M., and Gewillig,  M., 1995, “Comparison by Computerized Numeric Modeling of Energy Losses in Different Fontan Connection,” Circulation, 92, Suppl 2, pp. II322–II326.
de Leval,  M. R., Dubini,  G., Migliavacca,  F., Jalali,  H., Camporini,  G., Redington,  A., and Pietrabissa,  R., 1996, “Use of Computational Fluid Dynamics in the Design of Surgical Procedures: Application to the Study of Competitive Flows in Cavo-Pulmonary Connections,” J. Thorac. Cardiovasc. Surg., 111, pp. 502–513.
Dubini,  G., de Leval,  M. R., Pietrabissa,  R., Montevecchi,  F. M., and Fumero,  R., 1996, “A Numerical Fluid Mechanical Study of Repaired Congenital Heart Defects. Application to the Total Cavo-Pulmonary Connection,” J. Biomech., 29, pp. 111–121.
Migliavacca,  F., Kilner,  P. J., Pennati,  G., Dubini,  G., Pietrabissa,  R., Fumero,  R., and de Leval,  M. R., 1999, “Computational Fluid Dynamic and Magnetic Resonance Analyses of Flow Distribution Between Lungs After Total Cavopulmonary Connection,” IEEE Trans. Biomed. Eng., 46, pp. 393–399.
Migliavacca,  F., de Leval,  M. R., Dubini,  G., Pietrabissa,  R., and Fumero,  R., 1999, “Computational Fluid Dynamic Simulations of Cavopulmonary Connections With an Extracardiac Lateral Conduit,” Med. Eng. Phys., 23, pp. 187–193.
Healy,  T. M., Lucas,  C., and Yoganathan,  A. P., 2001, “Noninvasive Fluid Dynamic Power Loss Assessments for Total Cavopulmonary Connections Using the Viscous Dissipation Function: a Feasibility Study,” J. Biomech. Eng., 123, pp. 317–324.
Ryu,  K., Healy,  T. M., Ensley,  A. E., Sharma,  S., Lucas,  C., and Yoganathan,  A. P., 2001, “Importance of Accurate Geometry in the Study of the Total Cavopulmonary Connection: Computational Simulations and In Vitro Experiments,” Ann. Biomed. Eng., 29, pp. 844–853.
DeGroff,  C., and Shandas,  R., 2002, “Designing the Optimal Total Cavopulmonary Connection: Pulsatile Versus Steady Flow Experiments,” Med. Sci. Monit.,8, pp. MT41–MT45.
Bolzon,  G., Pedrizzetti,  G., Grigioni,  M., Zovatto,  L., Daniele,  C., and D’Avenio,  G., 2002, “Flow on the Symmetry Plane of a Total Cavo-Pulmonary Connection,” J. Biomech., 35, pp. 595–608.
Redington,  A. N., Penny,  D., and Shinebourne,  E. A., 1991, “Pulmonary Blood Flow After Total Cavopulmonary Shunt,” Br. Heart J., 65, pp. 213–217.
Houlind,  K., Stenbog,  E. V., Sorensen,  K. E., Emmertsen,  K., Hansen,  O. K., Rybro,  L., and Hjortdal,  V. E., 1999, “Pulmonary and Caval Flow Dynamics After Total Cavopulmonary Connection,” Heart, 81, pp. 67–72.
Guadagni,  G., Bove,  E. L., Migliavacca,  F., and Dubini,  G., 2001, “Effects of Pulmonary Afterload on the Haemodynamics After the Hemi-Fontan Procedure,” Med. Eng. Phys., 23, pp. 293–298.
Guadagni, G., Migliavacca, F., Dubini, G., and Bove, E. L., 2001, “Simulations of Surgical Planning for Fontan Procedures,” G. W. Schmid-Schönbein, ed., in Proceedings of the 2001 Summer Bioengineering Conference, Ed. ASME—The American Society of Mechanical Engineers, 50 , New York, pp. 911–912.
Bove,  E. L., 1998, “Current Status of Staged Reconstruction for Hypoplastic Left Heart Syndrome,” Pediatr. Cardiol., 19, pp. 308–315.
Khunatorn,  Y., Mahalingam,  S., DeGroff,  C. G., and Shandas,  R., 2002, “Influence of Connection Geometry and SVC-IVC Flow Rate Ratio on Flow Structures Within the Total Cavopulmonary Connection: A Numerical Study,” J. Biomech. Eng., 124, pp. 364–377.
Ferrandez,  A., David,  T., Bamford,  J., Scott,  J., and Guthrie,  A., 2000, “Computational Models of Blood Flow in the Circle of Willis,” Comput. Methods Biomech. Biomed. Engin., 4, pp. 1–26.
Laganà,  K., Dubini,  G., Migliavacca,  F., Pietrabissa,  R., Pennati,  G., Veneziani,  A., and Quarteroni,  A., 2002, “Multiscale Modelling as a Tool to Prescribe Realistic Boundary Conditions for the Study of Surgical Procedures,” Biorheology, 39, pp. 359–364.
Quarteroni,  A., Ragni,  S., and Veneziani,  A., 2001, “Coupling Between Lumped and Distributed Models for Blood Flow Problems,” Comput. Visual. Sci., 4, pp. 111–124.
Rebergen,  S. A., Ottenkanp,  J., Doornbos,  J., van der Wall,  E. E., Chin,  J. G. J., and de Roos,  A., 1993, “Postoperative Pulmonary Flow Dynamics After Fontan Surgery: Assessment With Nuclear Magnetic Resonance Velocity Mapping,” J. Am. Coll. Cardiol., 211, pp. 123–131.
Fogel,  M. A., Weinberg,  P. M., Hoydu,  A., Hubbard,  A., Rychik,  J., Jacobs,  M., Fellows,  K. E., and Haselgrove,  J., 1996, “The Nature of Flow in the Systemic Venous Pathway Measured by Magnetic Resonance Blood Tagging in Patients Having the Fontan Operation,” J. Thorac. Cardiovasc. Surg., 114, pp. 1032–1041.
Be’eri,  E., Maier,  S. E., Landzberg,  M. J., Chung,  T., and Geva,  T., 1998, “In Vivo Evaluation of Fontan Pathway Flow Dynamics by Multidimensional Phase-Velocity Magnetic Resonance Imaging,” Circulation, 98, pp. 2873–2882.
Sharma,  S., Ensley,  A. E., Hopkins,  K., Chatzimavroudis,  G. P., Healy,  T. M., Tam,  V. K., Kanter,  K. R., and Yoganathan,  A. P., 2001, “In Vivo Flow Dynamics of the Total Cavopulmonary Connection From Three-Dimensional Multislice Magnetic Resonance Imaging,” Ann. Thorac. Surg. 71, pp. 889–898.
Steinman,  D. A., Thomasm,  J. B., Ladak,  H. M., Milner,  J. S., Rutt,  B. K., and Spence,  J. D., 2002, “Reconstruction of Carotid Bifurcation Hemodynamics and Wall Thickness Using Computational Fluid Dynamics and MRI,” Magn. Reson. Med., 47, pp. 149–159.
Long,  Q., Xu,  X. Y., Bourne,  M., and Griffith,  T. M., 2000, “Numerical Study of Blood Flow in an Anatomically Realistic Aorto-Iliac Bifurcation Generated From MRI Data,” Magn. Reson. Med., 43, pp. 565–576.

Figures

Grahic Jump Location
Meshes of TCPC models: Intra-atrial tunnel models with central (IAc), right (IAr), elliptical (IAe) and patch (IAp) inferior anastomosis; Extra-cardiac lateral tunnel models with antero-posterior (EXa) or left (EXl) anastomotic insertion. For the EXa model, a lateral view is depicted which shows the curvature of the extra-cardiac conduit around the heart. SVC and pulmonary arteries are reconstructed from MRI and angiocardiograms 30. Dashed areas represent the inferior anastomotic cross-sections. Bottom right panel: planes used for the evaluation of secondary flows. A: anterior, P: posterior.
Grahic Jump Location
Adopted time functions for the inferior and superior venae cavae. (1 l/min=16.67 cm3 /s) from 22.
Grahic Jump Location
Complete model of the TCPC (EXa design) with porous jump elements at the pulmonary outlets
Grahic Jump Location
Mean dissipated power as a function of the pulmonary arteriolar resistance (PAR). (1 mmHg/(l/min)=80 g/(cm4 ⋅s)).
Grahic Jump Location
Pressure temporal tracings in the last cycle of the simulations at the IVC, SVC, LPA and RPA cross sections for models IAc (top) and IAp (bottom). (1 mmHg=133.32 Pa).
Grahic Jump Location
Velocity maps in three selected planes for all the TCPC designs at the time instant t=0.28 s from the beginning of the cardiac cycle, corresponding to maximum inlet (SVC+IVC) instantaneous volume flow. For the location of the planes, refer to the bottom-right panel of Fig. 1 RPA: right pulmonary artery, LPA: left pulmonary artery. A: anterior, P: posterior. A reference vector is reported at the bottom of the figure.
Grahic Jump Location
Velocity maps in three selected planes for all the TCPC designs at the time instant t=0.55 s from the beginning of the cardiac cycle, corresponding to equal caval inlet (SVC and IVC) instantaneous volume flow. For the location of the planes refer to the bottom right panel of Fig. 1. RPA: right pulmonary artery, LPA: left pulmonary artery. A: anterior, P: posterior. A reference vector is reported at the bottom of the figure.
Grahic Jump Location
Velocity maps in three selected planes for all the TCPC designs at the time instant t=0.69 s from the beginning of the cardiac cycle, which corresponding to the minimum inlet (SVC+IVC) instantaneous volume flow. For the location of the planes refer to the bottom right panel of Fig. 1. RPA: right pulmonary artery, LPA: left pulmonary artery. A: anterior, P: posterior. A reference vector is reported at the bottom of the figure.

Tables

Errata

Discussions

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related Journal Articles
Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In