Effect of Bone Mineral Content on the Tensile Properties of Cortical Bone: Experiments and Theory

[+] Author and Article Information
S. P. Kotha

University of Medicine and Dentistry of New Jersey, SOM, Department of Osteosciences/Biomechanics, PCC Suite 102, Stratford, NJ 08084-1504

N. Guzelsu

UMDNJ-SOM, Department of Osteosciences/Biomechanics, PCC Suite 102, Stratford, NJ 08084-1504 Phone: (856) 566-2731 Fax: (856) 566-2733 e-mail: guzelsu@umdnj.edu

J Biomech Eng 125(6), 785-793 (Jan 09, 2004) (9 pages) doi:10.1115/1.1631586 History: Online January 09, 2004
Copyright © 2003 by ASME
Your Session has timed out. Please sign back in to continue.


Currey,  J. D., 1984, “Effects of Differences in Mineralization on the Mechanical Properties of Bone,” Philos. Trans. R. Soc. London, B304, pp. 509–518.
Currey,  J. D., 1990, “Physical Characteristics Affecting the Tensile Failure Properties of Compact Bone,” J. Biomech., 23(8), pp. 837–844.
Martin,  R. B., and Ishida,  J., 1989, “The Relative Effects of Collagen Fiber Orientation, Porosity, Density, and Mineralization on Bone Strength,” J. Biomech., 22(5), pp. 419–426.
Martin,  R. B., and Boardman,  D. L., 1993, “The Effects of Collagen Fiber Orientation, Porosity, Density and Mineralization on Bovine Cortical Bone Bending Properties,” J. Biomech., 26(9), pp. 1047–1054.
Broz,  J. J., Simske,  S. J., and Greenberg,  A. R., 1995, “Material and Compositional Properties of Selectively Demineralized Cortical Bone,” J. Biomech., 28, pp. 1357–1368.
Sasaki,  N., and Yoshikawa,  M., 1993, “Stress Relaxation in Native and EDTA-Treated Bone as a Function of Mineral Content,” J. Biomech., 26(1), pp. 77–83.
Shah,  K. M., Goh,  J. C. H., Karunanithy,  R., Low,  S. L., Das,  D. S., and Bose,  K., 1995, “Effect of Decalcification on Bone Mineral Content and Bending Strength of Feline Femur,” Calcif. Tissue Int., 56, pp. 78–82.
Burstein,  A. H., Zika,  J. M., Heipl,  K. G., and Klein,  L., 1975, “Contribution of Collagen and Mineral to the Elastic-Plastic Properties of Bone,” J. Bone Jt. Surg., 58-A, pp. 956–961.
Kotha,  S. P., Walsh,  W. R., Pan,  Y., and Guzelsu,  N., 1998, “Varying the Mechanical Properties of Bone Tissue by Changing the Amount of its Structurally Effective Bone Mineral Content,” Biomed. Mater. Eng., 8, pp. 321–334.
Kotha,  S. P., DePaula,  C. A., Koike,  K., Pan,  Y., Ohno,  M., Rangarajan,  S., and Guzelsu,  N., 2002, “Controlled Dissolution from Intact Bones with In-vitro Fluoride Ion Treatments,” Connect. Tissue Res., 43(1), pp. 8–21.
DePaula,  C. A., Absornson,  C., Pan,  Y., Kotha,  S. P., Koike,  K., and Guzelsu,  N., 2002, “Changing the Structurally Effective Mineral Content of Bone with In-vitro Fluoride Treatment,” J. Bone Jt. Surg., 35(3), pp. 355–361.
Christoffersen,  J., Christoffersen,  M. R., Arends,  J., and Leonardsen,  E. S., 1995, “Formation of Phosphate-Containing Calcium Fluoride at the Expense of Enamel, Hydroxyapatite and Fluoroapatite,” Caries Res., 29, pp. 223–230.
Lin,  J., Raghavan,  S., and Fuerstenau,  D. W., 1981, “The Adsorption of Fluoride Ions by Hydroxyapatite from Aqueous Solution,” Colloids Surf., 3, pp. 357–370.
Chander,  S., Chiao,  C. C., and Fuerstenau,  D. W., 1982, “Transformation of Calcium Fluoride for Caries Prevention” J. Dent. Res., 61(2), pp. 403–407.
Kotha,  S. P., Kotha,  S., and Guzelsu,  N., 2000, “A Shear-Lag Model to Account for Interaction Effects between Inclusions in Composites Reinforced with Rectangular Platelets,” Compos. Sci. Technol., 60(11), pp. 2147–2158.
Kotha,  S. P., and Guzelsu,  N., 2002, “Micro-mechanical Modeling of the Tensile Properties of Cortical Bone,” J. Theor. Biol., 219(2), pp. 269–279.
Sedlin,  E. D., and Hirsch,  C., 1966, “Factors Affecting the Determination of the Physical Properties of Femoral Cortical Bone,” Acta Orthop. Scand. 37, pp. 29–48.
Walsh,  W. R., and Guzelsu,  N., 1991, “Electrokinetic Behavior of Intact Wet Bone: Compartmental Model,” J. Orthop. Res., 9, pp. 683–692.
Walsh,  W. R., Ohno,  M., and Guzelsu,  N., 1994, “Bone Composite Behavior: Effects of Mineral-Organic Bonding,” J. Mater. Sci.: Mater. Med., 5, pp. 72–79.
Bowman,  S. M., Zeind,  J., Gibson,  L. J., Hayes,  W. C., and McMahon,  T. A., 1996, “The Tensile Behavior of Demineralized Bovine Cortical Bone,” J. Biomech., 29(11), pp. 1497–1501.
Legros,  R., Balmain,  N., and Bonel,  G., 1987, “Age-Related Changes in Mineral of Rat and Bovine Cortical Bone,” Calcif. Tissue Int., 41, pp. 137–144.
Sarkar,  B. C. R., and Chauhan,  U. P. S., 1967, “A New Method for Determining Micro Quantities of Calcium in Biological Materials,” Anal. Biochem., 20, pp. 155–166.
Chen,  P. S., Toribara,  T. Y., and Warner,  H., 1956, “Microdetermination of Phosphorus,” Anal. Biochem., 28(11), pp. 1756–1758.
Whitford,  G. M., and Reynolds,  K. E., 1979, “Plasma and Developing Enamel Fluoride Concentrations During Chronic Acid-Base Disturbances,” J. Dent. Res., 58, pp. 2058–2065.
Kotha,  S. P., and Guzelsu,  N., 2001, “Micromechanical Model of Nacre Tested in Tension,” J. Mater. Sci.: Mater. Med., 36(8), pp. 2001–2007.
Jager,  I., and Fratzl,  P., 2000, “Mineralized Collagen Fibrils: A Mechanical Model with Staggered Arrangement of Mineral Particles,” Biophys. J., 79(4), pp. 1737–1746.
Boskey,  A. L., Wright,  T. M., and Blank,  R. D., 1999, “Collagen and Bone Strength,” J. Bone Miner. Res., 14(3), pp. 330–335.
Puustjarvi,  K., Nieminen,  J., Rasanen,  T., Hyttinen,  M., Helminen,  H. J., Kroger,  H., Huuskonen,  J., Alhava,  E., and Kovanen,  V., 1999, “Do More Highly Organized Collagen Fibrils Increase Bone Mechanical Strength in Loss of Mineral Density After One-year Running Training?” J. Bone Miner. Res., 14(3), pp. 321–329.
Zioupos,  P., Currey,  J. D., and Hamer,  A. J., 1999, “The Role of Collagen in the Declining Mechanical Properties of Aging Human Cortical Bone,” J. Biomed. Mater. Res., 45(2), pp. 108–116.
Wagner,  H. D., and Weiner,  S., 1992, “On the Relationship between the Microstructure of Bone and its Mechanical Stiffness,” J. Biomech., 25(11), pp. 1311–1320.
Gilmore,  R. S., and Katz,  J. L., 1982, “Elastic Properties of Apatites,” J. Bone Miner. Res., 17, pp. 1131–1141.
Blitz,  R. M., and Pellegrino,  E. D., 1969, “The Chemical Anatomy of Bone. I. A Comparative Study of Bone Composition in Sixteen Vertebrates,” J. Bone Jt. Surg., 59-A(3), pp. 456–466.
Tamioka,  A., Tazawa,  T., Miyasaka,  K., and Ishikawa,  K., 1974, “Shear Modulus from Gelatin Films,” Biopolymers, 13, pp. 735–746.
Gustafson,  M. B., Martin,  R. B., Gibson,  V., Storms,  D. H., Stover,  S. M., Gibeling,  J., and Griffin,  L., 1996, “Calcium Buffering is Required to Maintain Bone Stiffness in Saline Solution,” J. Biomech., 29(9), pp. 1191–1194.
Lee,  D. D., and Glimcher,  M. J., 1991, “Three Dimensional Spatial Relationship between the Collagen Fibrils and the Inorganic Calcium Phosphate Crystals of Pickerel and Herring Bone,” J. Mol. Biol., 217(3), pp. 487–501.
Fratzl,  P., Fratzl-Zelman,  N., and Klaushofer,  K., 1993, “Collagen Packing and Mineralization,” Biophys. J., 54, pp. 260–266.
Lees,  S., Bonar,  L. R., and Mook,  H. A., 1984, “A Study of Dense Mineralized Tissues by X-ray Diffraction,” Int. J. Biol. Macromol., 6, pp. 321–326.
Lees,  S., and Hukins,  D. W. L., 1992, “X-Ray Diffraction by Collagen in the Fully Mineralized Cortical Bone of Cow Tibia,” Bone Miner., 17(1), pp. 59–63.
Kato,  Y. P., Christiansen,  D. L., Hahn,  R. A., Shieh,  S. J., Goldstein,  J. D., and Silver,  F. H., 1989, “Mechanical Properties of Collagen Fibers—A Comparison of Reconstituted and Rat Tail Tendon Fibers,” Biomaterials, 10(1), pp. 38–41.
Twombly,  B., Cassel,  B., Goodkowsky,  S., Miller,  A. T., and Hess,  U., 1995, “Calorimetric and Dynamic Mechanical Analysis of Thermal Transitions in Collagen,” Mol. Cryst. Liq. Cryst., 265, pp. 171–180.
Weadock,  K. S., Miller,  E. J., Bellincampi,  L. D., Zawadsky,  J. P., and Dunn,  M. G., 1995, “Physical Cross-linking of Collagen Fibers—Comparison of Ultraviolet Irradiation and Dehydrothermal Treatment,” J. Biomed. Mater. Res., 9(11), pp. 1373–1379.
Kotha, S. P. Unpublished data, 1999.
Currey,  J. D., 1988, “The Effect of Porosity and Mineral Content on the Young’s Modulus of Elasticity of Compact Bone,” J. Biomech., 21, pp. 131-139.
Lucchinetti, E., 2001, “Composite Models of Bone Properties and Dense Bone Tissue as a Molecular Composite,” in Bone Mechanics Handbook, S. C. Cowin, ed., by 2nd edition. CRC Press, Boca Raton, pp. 12.1–12.15, 13.1–13.15.
Burr,  D. B., Martin,  R. B., Schaffler,  M. B., and Radin,  E. L., 1985, “Bone Remodeling in Response to In-vivo Fatigue Microdamage,” J. Biomech., 18(3), pp. 189–200.
Kotha,  S. P., and Guzelsu,  N., 2000, “The Effects of Interphase and Bonding on the Elastic Modulus of Bone: Changes with Age-Related Osteoporosis,” Med. Eng. Phys., 22(8), pp. 575–585.
DePaula, C. A. and Guzelsu, N. Unpublished data, 1999.


Grahic Jump Location
The unit cell with extrafibrillar or intrafibrillar mineral platelets and precipitated material (platelets) used to model the reinforcement of the organic matrix, primarily type I collagen.
Grahic Jump Location
Experimental and theoretical stress-strain curves for control (12-day immersed in saline) and 3-day and 12-day fluoride-treated specimens. The theoretical curves assumed that the shear modulus and shear yield stress decreases with increased dissolution. See text for details.
Grahic Jump Location
Mohr’s circle for the organic matrix with different mineral contents. It is constructed by using the ultimate normal stress of the organic matrix of bone from the decalcified sample experiments [22.3 MPa; 0.0 MPa]. The second point of the Mohr’s circle is obtained by matching the experimental value of the yield stress determined by the 0.002 offset method of the control sample to the theoretically predicted one [12.1 MPa; 19.3 MPa]. Here it is assumed that organic matrix of the bone tissue behaves perfectly elastic until ultimate stress is reached.




Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related Journal Articles
Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In